首页> 外文期刊>Journal of Parallel and Distributed Computing >PA-Star: A disk-assisted parallel A-Star strategy with locality-sensitive hash for multiple sequence alignment
【24h】

PA-Star: A disk-assisted parallel A-Star strategy with locality-sensitive hash for multiple sequence alignment

机译:PA-Star:磁盘辅助并行A-Star策略,具有局部敏感哈希,可进行多序列比对

获取原文
获取原文并翻译 | 示例

摘要

AbstractMultiple Sequence Alignment (MSA) is a basic operation in Bioinformatics, and is used to highlight the similarities among a set of sequences. The MSA problem was proven NP-Hard, thus requiring a high amount of memory and computing power. This problem can be modeled as a search for the path with minimum cost in a graph, and the A-Star algorithm has been adapted to solve it sequentially and in parallel. The design of a parallel version for MSA with A-Star is subject to challenges such as irregular dependency pattern and substantial memory requirements. In this paper, we propose PA-Star, a locality-sensitive multithreaded strategy based on A-Star, which computes optimal MSAs using both RAM and disk to store nodes. The experimental results obtained in 3 different machines show that the optimizations used in PA-Star can achieve an acceleration of1.88×in the serial execution, and the parallel execution can attain an acceleration of5.52×with 8 cores. We also show that PA-Star outperforms a state-of-the-art MSA tool based on A-Star, executing up to4.77×faster. Finally, we show that our disk-assisted strategy is able to retrieve the optimal alignment when other tools fail.HighlightsAn A-Star based algorithm that retrieves optimal multiple sequence alignments.Locality-sensitive hash functions to assign work to cores.Disk-assisted strategy which augments the amount of memory.Better performance than state-of-the-art.
机译: 摘要 多序列比对(MSA)是生物信息学中的一项基本操作,用于突出显示一组序列之间的相似性。 MSA问题已被证明为NP-Hard,因此需要大量的内存和计算能力。可以将这个问题建模为以最小代价在图中搜索路径,并且A-Star算法已经过改进,可以依次并行地求解。带有A-Star的MSA并行版本的设计面临诸多挑战,例如不规则依赖模式和大量内存需求。在本文中,我们提出了PA-Star,这是一种基于A-Star的局部敏感多线程策略,该策略使用RAM和磁盘来存储节点来计算最佳MSA。在3台不同机器上获得的实验结果表明,PA-Star中使用的优化可以实现 1.88 × 在串行执行中,而并行执行可以达到 5.52 × 有8核心。我们还表明,PA-Star的性能优于基于A-Star的最新MSA工具,它执行到 4.77 × 更快。最后,我们证明了在其他工具失败时,我们的磁盘辅助策略能够检索最佳对齐方式。 突出显示 一个A-基于星的算法,可检索最佳的多个序列比对。 位置敏感的哈希函数可将工作分配给核心。 磁盘辅助策略ich会增加内存量。 性能比最新技术更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号