首页> 外文期刊>Journal of Parallel and Distributed Computing >Parallel algorithms for computing the smallest binary tree size in unit simplex refinement
【24h】

Parallel algorithms for computing the smallest binary tree size in unit simplex refinement

机译:用于在单位单纯形精炼中计算最小二叉树大小的并行算法

获取原文
获取原文并翻译 | 示例

摘要

AbstractRefinement of the unit simplex by iterative longest edge bisection (LEB) up to sub-simplices have a size smaller or equal to a given accuracy, generates a binary tree. For a dimension higher than three, the size of the generated tree depends on the bisected LE. There may exist more than one selection sequence of LE that solves the Smallest Binary Tree Size Problem (SBTSP). Solving SBTSP by full enumeration requires considering every possible LE bisection in each sub-simplex. This is an irregular Combinatorial Optimization problem with an increasing computational burden in the dimension and the stopping criterion. Therefore, parallel computing is appealing to find the minimum size for hard instances in a reasonable time.The aim of this study is to develop and compare threaded algorithms running on multicore systems to solve the SBTS problem. Versions running on multicore systems with a static number of threads using TBB, and a dynamic number of threads using Pthread are compared. Interestingly, TBB scales better than the Pthread implementations for lower dimensional problems. However, when the problem dimension is higher than six, the Pthread approach with a dynamic number of threads finds a solution, where the TBB version fails. This is caused by the smaller memory footprint of the Pthread version, as it traverses deeper branches of the tree than the TBB work-stealing approach.HighlightsImplementation of the recursive and iterative sequential algorithm to solve the SBTSP.Three parallel implementations of the previous sequential versions, Pthread and TBB.Explanation why the Pthread version requires less memory than the TBB one.Comparison of three dynamic memory management libraries suitable for shared memory architectures.
机译: 摘要 通过迭代最长边二等分(LEB)精炼单位单纯形子单纯形的大小小于或等于给定的精度,生成二叉树。对于大于3的维,生成树的大小取决于等分的LE。解决最小二叉树大小问题(SBTSP)的LE可能存在多个选择序列。通过完全枚举解决SBTSP需要考虑每个子单纯形中的每个可能的LE对分。这是一个不规则的组合优化问题,在维数和停止准则上增加了计算负担。因此,并行计算非常适合在合理的时间内找到硬实例的最小大小。 目标这项研究的目的是开发和比较在多核系统上运行的线程算法,以解决SBTS问题。比较了在多核系统上运行的版本以及使用TBB的静态线程数和使用Pthread的动态线程数。有趣的是,对于较小尺寸的问题,TBB的伸缩性优于Pthread实现。但是,当问题维度大于6时,具有动态线程数的Pthread方法将找到解决方案,其中TBB版本失败。这是因为Pthread版本比TBB工作窃取方法遍历了树的更深的分支,因此占用的内存更少。 突出显示 递归和 先前顺序版本的三个并行实现Pthread和TBB。 解释为什么Pthread版本比TBB版本需要更少的内存。 < ce:label>• 比较适用于共享内存体系结构的三个动态内存管理库。 < / ce:list-item>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号