首页> 外文期刊>Journal of Parallel and Distributed Computing >Co-processing heterogeneous parallel index for multi-dimensional datasets
【24h】

Co-processing heterogeneous parallel index for multi-dimensional datasets

机译:多维数据集的协同处理异构并行索引

获取原文
获取原文并翻译 | 示例

摘要

AbstractWe present a novel multi-dimensional range query co-processing scheme for the CPU and GPU. It has been reported that traversing hierarchical tree structures in parallel is inherently not efficient because of large branching factors. Besides, it is known that the recursive tree traversal algorithm required for multi-dimensional range queries is not well suited for the GPU architecture owing to its small shared memory.In this paper, we propose co-processing range queries using both the CPU and GPU to make the most use of each architecture. InHybrid treethat we present in this paper, we let CPU navigate the internal nodes of hierarchical tree structures and make GPU scan leaf nodes in a linear fashion using a massively large number of processing units. With the co-processing scheme, we can asynchronously leverage the strengths of each architecture. We also propose a novel dynamic GPU block scheduling algorithm for multiple range queries. In our scheduling algorithm, we consider the selection ratio of each query to determine the number of GPU blocks to launch. By assigning the right number of GPU blocks, we can significantly improve the query processing throughput for multiple concurrent queries. Our extensive experimental study shows that the proposed co-processing scheme shows up to 12× faster query response time than the state-of-the-art GPU tree traversal algorithm. We also show that our dynamic GPU block assignment algorithm improves the query processing throughput by up to 4× .HighlightsThis paper presents a novel CPU+GPU co-processing scheme for multidimensional indexing.With our CPU+GPU co-processing scheme, we can asynchronously take advantage of each architecture.CPU+GPU co-processing scheme shows up to 12× faster performance than the state-of-the-art GPU algorithm.
机译: 摘要 我们提出了一种新颖的多维范围查询协同处理方案CPU和GPU。据报道,由于分支因子较大,因此并行遍历分层树结构固有地效率不高。此外,众所周知,多维范围查询所需的递归树遍历算法由于共享内存较小,因此不太适合GPU体系结构。 在本文中,我们提出了使用CPU和GPU进行协同处理范围查询的方法,以充分利用每种体系结构。在本文中介绍的混合树中,我们让CPU导航分层树结构的内部节点,并使用大量处理单元以线性方式使GPU扫描叶节点。通过协同处理方案,我们可以异步利用每种体系结构的优势。我们还提出了一种用于多范围查询的新型动态GPU块调度算法。在我们的调度算法中,我们考虑每个查询的选择比率,以确定要启动的GPU块的数量。通过分配正确数量的GPU块,我们可以显着提高多个并发查询的查询处理吞吐量。我们广泛的实验研究表明,建议的协同处理方案最多显示12个 × 查询响应时间比状态-最先进的GPU树遍历算法。我们还展示了我们的动态GPU块分配算法将查询处理吞吐量提高了多达4 × 突出显示 本文提出了一种新颖的CPU + GPU协同处理方案多维索引。 我们的CPU + GPU协同处理方案,我们可以异步利用每种体系结构。 < / ce:list-item> CPU + GPU协同处理方案最多显示12个 × 比最新的GPU算法更快的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号