首页> 外文期刊>Journal of Parallel and Distributed Computing >Energy-efficient acceleration of MapReduce applications using FPGAs
【24h】

Energy-efficient acceleration of MapReduce applications using FPGAs

机译:使用FPGA的MapReduce应用程序的节能加速

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a full end-to-end implementation of big data analytics applications in a heterogeneous CPU+FPGA architecture. Selecting the optimal architecture that results in the highest acceleration for big data applications requires an in-depth of each application. Thus, we develop the MapReduce implementation of K-means, K nearest neighbor, support vector machine and naive Bayes in a Hadoop Streaming environment that allows developing mapper functions in a non Java based language suited for interfacing with FPGA-based hardware accelerating environment. We further profile various components of Hadoop MapReduce to identify candidates for hardware acceleration. We accelerate the mapper functions through hardware+software (HW+SW) co-design. Moreover, we study how various parameters at the application (size of input data), system (number of mappers running simultaneously per node and data split size), and architecture (choice of CPU core such as big vs little, e.g., Xeon vs Atom) levels affect the performance and power-efficiency benefits of Hadoop streaming hardware acceleration and the overall performance and energy-efficiency of the system. A promising speedup as well as energy-efficiency gains of up to 8.3 x and 15 x is achieved, respectively, in an end-to-end Hadoop implementation. Our results show that HW+SW acceleration yields significantly higher speedup on Atom server, reducing the performance gap between little and big cores after the acceleration. On the other hand, HW+SW acceleration reduces the power consumption of Xeon server more significantly, reducing the power gap between little and big cores. Our cost Analysis shows that the FPGA-accelerated Atom server yields execution times that are close to or even lower than stand-alone Xeon server for the studied applications, while reducing the server cost by more than 3x. We confirm the scalability of FPGA acceleration of MapReduce by increasing the data size on 12-node Xeon cluster and show that FPGA acceleration maintains its benefit for larger data sizes on a cluster. (C) 2018 Elsevier Inc. All rights reserved.
机译:在本文中,我们介绍了异构CPU + FPGA架构中大数据分析应用程序的完整端到端实现。选择能够为大数据应用程序带来最高加速的最佳架构,需要深入了解每个应用程序。因此,我们在Hadoop流环境中开发了K均值,K最近邻,支持向量机和朴素贝叶斯的MapReduce实现,该实现允许使用非Java语言开发映射器功能,该语言适合与基于FPGA的硬件加速环境进行接口。我们进一步介绍了Hadoop MapReduce的各个组件,以识别硬件加速的候选对象。我们通过硬件+软件(HW + SW)协同设计来加速映射器功能。此外,我们研究了应用程序的各种参数(输入数据的大小),系统(每个节点同时运行的映射器的数量和数据分割的大小)以及体系结构(CPU内核的选择,例如大与小,例如,至强与原子)的方式。级别会影响Hadoop流硬件加速的性能和能效优势以及系统的整体性能和能效。在端到端Hadoop实施中,分别实现了令人鼓舞的加速以及高达8.3倍和15倍的能源效率增益。我们的结果表明,HW + SW加速可显着提高Atom服务器的加速,从而减小加速后小核与大核之间的性能差距。另一方面,硬件+软件加速可显着降低Xeon服务器的功耗,从而缩小小核与大核之间的功耗差距。我们的成本分析表明,对于所研究的应用程序,FPGA加速的Atom服务器产生的执行时间接近或低于独立Xeon服务器,同时服务器成本降低了三倍以上。我们通过增加12节点Xeon群集上的数据大小来确认MapReduce的FPGA加速的可扩展性,并表明FPGA加速对于群集上更大的数据大小保持了其优势。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号