首页> 外文期刊>Journal of Parallel and Distributed Computing >Backfilling with lookahead to optimize the packing of parallel jobs
【24h】

Backfilling with lookahead to optimize the packing of parallel jobs

机译:提前回填以优化并行作业的打包

获取原文
获取原文并翻译 | 示例

摘要

The utilization of parallel computers depends on how jobs are packed together: if the jobs are not packed tightly, resources are lost due to fragmentation. The problem is that the goal of high utilization may conflict with goals of fairness or even progress for all jobs. The common solution is to use backfilling, which combines a reservation for the first job in the interest of progress with packing of later jobs to fill in holes and increase utilization. However, backfilling considers the queued jobs one at a time, and thus might miss better packing opportunities. We propose the use of dynamic programming to find the best packing possible given the current composition of the queue, thus maximizing the utilization on every scheduling step. Simulations of this algorithm, called lookahead optimizing scheduler (LOS), using trace files from several IBM SP parallel systems, show that LOS indeed improves utilization, and thereby reduces the mean response time and mean slowdown of all jobs. Moreover, it is actually possible to limit the lookahead depth to about 50 jobs and still achieve essentially the same results. Finally, we experimented with selecting among alternative sets of jobs that achieve the same utilization. Surprising results indicate that choosing the set at the head of the queue does not necessarily guarantee best performance. Instead, repeatedly selecting the set with the maximal overall expected slowdown boosts performance when compared to all other alternatives checked. (c) 2005 Elsevier Inc. All rights reserved.
机译:并行计算机的利用率取决于如何将作业打包在一起:如果没有紧密打包作业,则会由于碎片而浪费资源。问题在于,高利用率的目标可能与所有工作的公平甚至进步目标相抵触。常见的解决方案是使用回填,该回填将针对进度的第一个作业的预留与后续作业的打包相结合,以填补空缺并提高利用率。但是,回填一次只考虑排队的作业,因此可能会错过更好的包装机会。我们建议使用动态编程来找到给定当前队列组成的最佳打包,从而最大化每个调度步骤的利用率。使用来自几个IBM SP并行系统的跟踪文件对该算法进行的模拟(称为超前优化调度程序(LOS))显示,LOS确实提高了利用率,从而减少了平均响应时间和所有作业的平均速度降低。而且,实际上有可能将超前深度限制为大约50个作业,并且仍然可以获得基本相同的结果。最后,我们进行了实验,以选择可实现相同利用率的替代作业集。令人惊讶的结果表明,选择队列开头的集合并不一定保证最佳性能。相反,与其他所有已检查的替代方法相比,重复选择具有最大预期总体减慢速度的集合可提高性能。 (c)2005 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号