首页> 外文期刊>Journal of Parallel and Distributed Computing >Finding minimum transmission radii for preserving connectivity and constructing minimal spanning trees in ad hoc and sensor networks
【24h】

Finding minimum transmission radii for preserving connectivity and constructing minimal spanning trees in ad hoc and sensor networks

机译:寻找最小的传输半径以保持连接性并在ad hoc和传感器网络中构建最小的生成树

获取原文
获取原文并翻译 | 示例

摘要

Ad hoc networks are normally modeled by unit graphs, where two nodes are connected if and only if their distance is at most the transmission radius R, equal for all nodes. Larger than necessary values of R cause communication interference and consumption of increased energy, while smaller values may disable data communication tasks such as routing and broadcasting. It was recognized that the minimum value of R that preserves the network connectivity is equal to the longest edge in the minimum spanning tree. However, all existing solutions for finding R rely on algorithms that require global network knowledge or inefficient straightforward distributed adaptations of centralized algorithms. This article proposes to use the longest LMST (local minimum spanning tree, recently proposed message free approximation of MST) edge to approximate R using a wave propagation quasi-localized algorithm. The differences between exact and so approximated values of R are estimated for two and three-dimensional random unit graphs. Despite small number of additional edges in LMST with respect to MST (under 5%), they can extend R by about 33% its range on networks with up to 500 nodes. We then prove that MST is a subset of LMST and describe a quasi-localized scheme for constructing MST from LMST It needs less than 7 messages per node on average (for networks tip to 500 nodes). The algorithm eliminates LMST edges which are not in MST by a loop breakage procedure, which iteratively follows dangling edges from leaves to LMST loops, and breaks loops by eliminating their longest edges, until the procedure finishes at a single node (as a byproduct, this single node can also be considered as an elected leader of the network). This so elected leader also learns longest MST edge in the process, and may broadcast it to other nodes. We also describe an algorithm for updating MST when a single node is added to the network. (C) 2004 Elsevier Inc. All rights reserved.
机译:Ad hoc网络通常由单位图建模,其中两个节点在且仅当它们的距离最大为传输半径R(对于所有节点均相等)时才连接。大于必要值的R会导致通信干扰并消耗更多的能量,而较小的值可能会禁用诸如路由和广播之类的数据通信任务。已经认识到,保持网络连接性的R的最小值等于最小生成树中的最长边。但是,所有现有的用于找到R的解决方案都依赖于需要全局网络知识或集中式算法效率低下的直接分布式适应的算法。本文提出使用最长的LMST(局部最小生成树,最近提出的MST的无消息近似)边缘,通过波传播准局部化算法来近似R。对于二维和三维随机单位图,估计R的精确值与近似值之间的差异。尽管相对于MST,LMST中的附加边缘数量很少(低于5%),但在具有多达500个节点的网络上,它们可以将R的范围扩展约33%。然后,我们证明MST是LMST的子集,并描述了一种从LMST构造MST的准本地化方案。它平均每个节点需要少于7条消息(对于网络端到500个节点)。该算法通过循环破坏程序消除了不在MST中的LMST边缘,该过程反复从叶子到LMST循环悬吊着边缘,并通过消除最长的边缘来破坏循环,直到该过程在单个节点处完成(作为副产品,这也可以将单个节点视为网络的当选领导者)。这样当选的领导者还将学习该过程中最长的MST边缘,并将其广播到其他节点。我们还描述了将单个节点添加到网络时用于更新MST的算法。 (C)2004 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号