首页> 外文期刊>Journal of Parallel and Distributed Computing >Automatic performance debugging of SPMD-style parallel programs
【24h】

Automatic performance debugging of SPMD-style parallel programs

机译:SPMD风格的并行程序的自动性能调试

获取原文
获取原文并翻译 | 示例

摘要

Automatic performance debugging of parallel applications includes two main steps: locating performance bottlenecks and uncovering their root causes for performance optimization. Previous work fails to resolve this challenging issue in two ways: first, several previous efforts automate locating bottlenecks, but present results in a confined way that only identifies performance problems with a priori knowledge; second, several tools take exploratory or confirmatory data analysis to automatically discover relevant performance data relationships, but these efforts do not focus on locating performance bottlenecks or uncovering their root causes. The simple program and multiple data (SPMD) programming model is.widely used for both high performance computing and Cloud computing. In this paper, we design and implement an innovative system, AutoAnalyzer, that automates the process of debugging performance problems of SPMD-style parallel programs, including data collection, performance behavior analysis, locating bottlenecks, and uncovering their root causes. AutoAnalyzer is unique in terms of two features: first, without any prior knowledge, it automatically locates bottlenecks and uncovers their root causes for performance optimization; second, it is lightweight in terms of the size of performance data to be collected and analyzed. Our contributions are three-fold: first, we propose two effective clustering algorithms to investigate the existence of performance bottlenecks that cause process behavior dissimilarity or code region behavior disparity, respectively; meanwhile, we present two searching algorithms to locate bottlenecks; second, on the basis of the rough set theory, we propose an innovative approach to automatically uncover root causes of bottlenecks; third, on the cluster systems with two different configurations, we use two production applications, written in Fortran 77, and one open source code— MPIBZIP2 (http://compression.ca/mpibzip2/), written in C++, to verify the effectiveness and correctness of our methods. For three applications, we also propose an experimental approach to investigating the effects of different metrics on locating bottlenecks.
机译:并行应用程序的自动性能调试包括两个主要步骤:定位性能瓶颈并发现其性能优化的根本原因。先前的工作无法以两种方式解决这一具有挑战性的问题:首先,先前的一些努力使瓶颈得以自动定位,但是以局限的方式呈现了结果,只能以先验知识识别性能问题。其次,有几种工具采用探索性或确认性数据分析来自动发现相关的绩效数据关系,但是这些工作并不专注于查找绩效瓶颈或发现其根本原因。简单程序和多数据(SPMD)编程模型广泛用于高性能计算和云计算。在本文中,我们设计并实现了一个创新的系统AutoAnalyzer,该系统可以自动调试SPMD样式的并行程序的性能问题,包括数据收集,性能行为分析,定位瓶颈以及发现其根本原因。 AutoAnalyzer具有两个方面的独特之处:首先,它无需任何先验知识即可自动定位瓶颈并发现其性能优化的根本原因;其次,就要收集和分析的性能数据的大小而言,它是轻量级的。我们的贡献有三点:首先,我们提出了两种有效的聚类算法,以研究分别导致进程行为差异或代码区域行为差异的性能瓶颈。同时,我们提出两种查找瓶颈的搜索算法;其次,在粗糙集理论的基础上,我们提出了一种创新的方法来自动发现瓶颈的根本原因。第三,在具有两种不同配置的集群系统上,我们使用两个用Fortran 77编写的生产应用程序和一个用C ++编写的开源代码MPIBZIP2(http://compression.ca/mpibzip2/),来验证有效性。和我们方法的正确性。对于三个应用程序,我们还提出了一种实验方法来研究不同指标对定位瓶颈的影响。

著录项

  • 来源
    《Journal of Parallel and Distributed Computing》 |2011年第7期|p.925-937|共13页
  • 作者单位

    Institute of Computing Technology, China Academy of Sciences, Beijing 100190, China,Department of Computer Science, Wayne State University, UnitedStates;

    Institute of Computing Technology, China Academy of Sciences, Beijing 100190, China,Department of Computer Science, Rice University, United States;

    Graduate University of Chinese Academy of Sciences, China;

    Department of Computer Science, Wayne State University, UnitedStates;

    Institute of Computing Technology, China Academy of Sciences, Beijing 100190, China,Graduate University of Chinese Academy of Sciences, China;

    Institute of Computing Technology, China Academy of Sciences, Beijing 100190, China;

    Institute of Computing Technology, China Academy of Sciences, Beijing 100190, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SPMD parallel programs; automatic performance debugging; performance bottleneck; root cause analysis; performance optimization;

    机译:SPMD并行程序;自动性能调试;性能瓶颈;根本原因分析;性能优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号