首页> 外文期刊>Journal of Optimization Theory and Applications >Maximal Points of Convex Sets in Locally Convex Topological Vector Spaces: Generalization of the Arrow–Barankin–Blackwell Theorem
【24h】

Maximal Points of Convex Sets in Locally Convex Topological Vector Spaces: Generalization of the Arrow–Barankin–Blackwell Theorem

机译:局部凸拓扑矢量空间中凸集的最大点:Arrow–Barankin–Blackwell定理的推广

获取原文
获取原文并翻译 | 示例

摘要

In 1953, Arrow, Barankin, and Blackwell proved that, if C is a nonempty compact convex set in Rn with its standard ordering, then the set of points in C maximizing strictly positive linear functionals is dense in the set of maximal points of C. In this paper, we present a generalization of this result. We show that that, if C is a compact convex set in a locally convex topological space X and if K is an ordering cone on X such that the quasi-interiors of K and the dual cone K* are nonempty, then the set of points in C maximizing strictly positive linear functionals is dense in the set of maximal points of C. For example, our work shows that, under the appropriate conditions, the density results hold in the spaces Rn, Lp(Ω, μ), 1≤p≤∞, lp, 1≤p≤∞, and C (Ω), Ω a compact Hausdorff space, when they are partially ordered with their natural ordering cones.
机译:1953年,Arrow,Barankin和Blackwell证明,如果C是Rn 中具有标准顺序的非空紧凸集,则C中将严格正线性函数最大化的点集在最大集中是密集的C点。在本文中,我们对该结果进行了概括。我们证明,如果C是局部凸拓扑空间X中的紧凸集,并且K是X上的有序锥,使得K的拟内和双锥K *为非空,则点集在C中最大化严格正线性泛函的过程在C的最大点集中是密集的。例如,我们的工作表明,在适当的条件下,密度结果保持在空间Rn ,Lp ( Ω,μ),1≤p≤∞,lp ,1≤p≤∞,C(Ω),Ω是紧凑的Hausdorff空间,当它们用其自然排序锥部分地排序时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号