首页> 外文期刊>Journal of Optimization Theory and Applications >Minimum Principle of Complementary Energy for Nonlinear Elastic Cable Networks with Geometrical Nonlinearities
【24h】

Minimum Principle of Complementary Energy for Nonlinear Elastic Cable Networks with Geometrical Nonlinearities

机译:具有几何非线性的非线性弹性电缆网络的互补能最小原理

获取原文
获取原文并翻译 | 示例

摘要

A minimum principle of complementary energy is established for cable networks involving only the stress components as variables with geometrical nonlinearities and nonlinear elastic materials. The minimization problem of total potential energy is reformulated as a variational problem with a convex objective functional and an infinite number of second-order cone constraints; its Fenchel dual problem is shown to coincide with the minimization problem of the complementary energy. It is of interest to note that the obtained complementary energy attains always its minimum value at the equilibrium state irrespective of the stability of the cable networks, contrary to the fact that only stationary principles have been presented for elastic trusses and continua, even in the case of a stable equilibrium state.
机译:对于仅包含应力分量作为具有几何非线性和非线性弹性材料的变量的电缆网络,建立了补充能量的最小原理。将总势能的最小化问题重新构造为具有凸目标函数和无限数量的二阶锥约束的变分问题;它的Fenchel对偶问题与互补能量的最小化问题相吻合。值得注意的是,无论电缆网络的稳定性如何,所获得的互补能量在平衡状态下始终始终达到其最小值,这与事实相反,即使在这种情况下,对于弹性桁架和连续体也只提出了固定原理。稳定的平衡状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号