首页> 外文期刊>Journal of Optimization Theory and Applications >Stochastic Multiobjective Optimization: Sample Average Approximation and Applications
【24h】

Stochastic Multiobjective Optimization: Sample Average Approximation and Applications

机译:随机多目标优化:样本平均逼近法和应用

获取原文
获取原文并翻译 | 示例

摘要

We investigate one stage stochastic multiobjective optimization problems where the objectives are the expected values of random functions. Assuming that the closed form of the expected values is difficult to obtain, we apply the well known Sample Average Approximation (SAA) method to solve it. We propose a smoothing infinity norm scalarization approach to solve the SAA problem and analyse the convergence of efficient solution of the SAA problem to the original problem as sample sizes increase. Under some moderate conditions, we show that, with probability approaching one exponentially fast with the increase of sample size, an ϵ-optimal solution to the SAA problem becomes an ϵ-optimal solution to its true counterpart. Moreover, under second order growth conditions, we show that an efficient point of the smoothed problem approximates an efficient solution of the true problem at a linear rate. Finally, we describe some numerical experiments on some stochastic multiobjective optimization problems and report preliminary results.
机译:我们调查一阶段的随机多目标优化问题,其中目标是随机函数的期望值。假设难以获得期望值的封闭形式,我们采用众所周知的“样本平均近似”(SAA)方法进行求解。我们提出一种平滑无穷范数标量化方法来解决SAA问题,并分析随着样本数量的增加,将SAA问题的有效解决方案与原始问题进行收敛。在某些适度的条件下,我们表明,随着样本数量的增加,概率接近指数增长,SAA问题的ϵ最优解变成了其真实对应项的ϵ最优解。此外,在二阶增长条件下,我们证明了平滑问题的有效点以线性速率逼近了真实问题的有效解。最后,我们描述了一些随机多目标优化问题的数值实验,并报告了初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号