首页> 外文期刊>Journal of Optimization Theory and Applications >On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing
【24h】

On Solving Large-Scale Finite Minimax Problems Using Exponential Smoothing

机译:用指数平滑法求解大规模有限极大极小问题

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on finite minimax problems with many functions, and their solution by means of exponential smoothing. We conduct run-time complexity and rate of convergence analysis of smoothing algorithms and compare them with those of SQP algorithms. We find that smoothing algorithms may have only sublinear rate of convergence, but as shown by our complexity results, their slow rate of convergence may be compensated by small computational work per iteration. We present two smoothing algorithms with active-set strategies and novel precision-parameter adjustment schemes. Numerical results indicate that the algorithms are competitive with other algorithms from the literature, and especially so when a large number of functions are nearly active at stationary points.
机译:本文着重讨论具有许多函数的有限极小极大问题,以及它们通过指数平滑的解决方案。我们进行平滑算法的运行时复杂度和收敛速度分析,并将其与SQP算法进行比较。我们发现平滑算法可能仅具有亚线性收敛速度,但是正如我们的复杂度结果所示,它们的缓慢收敛速度可以通过每次迭代的少量计算工作来补偿。我们介绍了两种具有主动集策略的平滑算法和新颖的精度参数调整方案。数值结果表明,该算法与文献中的其他算法相比具有竞争优势,尤其是当大量函数在固定点几乎都处于活动状态时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号