首页> 外文期刊>Journal of nonparametric statistics >Nonparametric maximum-likelihood estimation of within-set ranking errors in ranked set sampling
【24h】

Nonparametric maximum-likelihood estimation of within-set ranking errors in ranked set sampling

机译:排序集抽样中集内排序误差的非参数最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

A distribution-free statistical inference for the quality of within-set judgement ranking information is developed for ranked set samples. The judgement ranking information is modelled through Bohn-Wolfe (BW) model. The cumulative distribution function and the parameters of BW model are estimated by maximising nonparametric likelihood functions. A missing data model is introduced to construct an efficient computational algorithm. The advantages of the new estimators are that they require essentially no assumption on the underlying distribution function, which provides an estimate of the quality of within-set ranking information, and that they lead to a valid statistical inference even under imperfect ranking. The proposed estimators are applied to a water flow data set to estimate judgement ranking information and underlying distribution function.
机译:针对排序后的集合样本,开发了一种用于集合内判断排名信息质量的无分布统计推断。判断排名信息是通过Bohn-Wolfe(BW)模型建模的。通过最大化非参数似然函数来估算累积分布函数和BW模型的参数。引入缺失数据模型以构建有效的计算算法。新估计器的优点在于,它们基本上不需要对基础分布函数进行假设,从而可以估计内部排名信息的质量,并且即使在排名不完善的情况下,也可以得出有效的统计推断。提出的估计器应用于水流量数据集,以估计判断等级信息和基础分布函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号