首页> 外文期刊>Journal of neural engineering >Multi-dimensional persistent feature analysis identifies connectivity patterns of resting-state brain networks in Alzheimer’s disease
【24h】

Multi-dimensional persistent feature analysis identifies connectivity patterns of resting-state brain networks in Alzheimer’s disease

机译:多维持久性特征分析识别阿尔茨海默病中休息状态脑网络的连通模式

获取原文
获取原文并翻译 | 示例

摘要

Objective. The characterization of functional brain network is crucial to understanding the neuralmechanisms associated with Alzheimer’s disease (AD) and mild cognitive impairment (MCI).Some studies have shown that graph theoretical analysis could reveal changes of the disease-relatedbrain networks by thresholding edge weights. But the choice of threshold depends on ambiguouscognitive conditions, which leads to the lack of interpretability. Recently, persistent homology (PH)was proposed to record the persistence of topological features of networks across every possiblethresholds, reporting a higher sensitivity than graph theoretical features in detecting network-levelbiomarkers of AD. However, most research on PH focused on zero-dimensional features(persistence of connected components) reflecting the intrinsic topology of the brain network,rather than one-dimensional features (persistence of cycles) with an interesting neurobiologicalcommunication pattern. Our aim is to explore the multi-dimensional persistent features of brainnetworks in the AD and MCI patients, and further to capture valuable brain connectivity patterns.Approach. We characterized the change rate of the connected component numbers across graphfiltration using the functional derivative curves, and examined the persistence landscapes thatvectorize the persistence of cycle structures. After that, the multi-dimensional persistent featureswere validated in disease identification using a K-nearest neighbor algorithm. Furthermore, aconnectivity pattern mining framework was designed to capture the disease-specific brainstructures. Main results. We found that the multi-dimensional persistent features can identifystatistical group differences, quantify subject-level distances, and yield disease-specific connectivitypatterns. Relatively high classification accuracies were received when compared with graphtheoretical features. Significance. This work represents a conceptual bridge linking complex brainnetwork analysis and computational topology. Our results can be beneficial for providing acomplementary objective opinion to the clinical diagnosis of neurodegenerative diseases.
机译:客观的。功能性脑网络的表征对于了解神经网络至关重要与阿尔茨海默病(AD)和轻度认知障碍(MCI)相关的机制。一些研究表明,图形理论分析可以揭示疾病相关的变化脑网络通过阈值边缘权重。但门槛的选择取决于含糊不清的认知条件,导致缺乏可解释性。最近,持续同源性(pH)建议记录每种可能的网络拓扑功能的持久性阈值,报告比图形检测网络级的理论特征更高的灵敏度广告的生物标志物。然而,大多数研究pH重点关注零维特征(连接组件的持久性)反映了大脑网络的内在拓扑,具有有趣的神经生物学的无一维特征(循环持续性)而不是一维特征,而不是一维特征通信模式。我们的目标是探讨大脑的多维持续特征广告和MCI患者的网络,进一步捕获有价值的脑连接模式。方法。我们在图表中表征了连接的组件号的变化率使用功能衍生曲线过滤,并检查了持久性景观矢量化循环结构的持久性。之后,多维持久性功能使用K最近邻算法验证疾病识别。此外,A.连接模式挖掘框架旨在捕获疾病特异性大脑结构。主要结果。我们发现多维持久性功能可以识别统计组差异,量化主题距离,并产生疾病特异性连接模式。与图表相比,收到了相对高的分类精度理论特征。意义。这项工作代表了联系复杂大脑的概念桥梁网络分析与计算拓扑。我们的结果可能有利于提供a互补目标对神经变性疾病的临床诊断的意见。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号