首页> 外文期刊>Journal of neural engineering >Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study
【24h】

Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study

机译:预测上肢功能性电刺激神经假体的功能力产生能力:概念验证

获取原文
获取原文并翻译 | 示例

摘要

Objective. This study’s goal was to demonstrate person-specific predictions of the force productioncapabilities of a paralyzed arm when actuated with a functional electrical stimulation (FES)neuroprosthesis. These predictions allow us to determine, for each hand position in a person’sworkspace, if FES activated muscles can produce enough force to hold the arm against gravity andother passive forces, the amount of force the arm can potentially exert on external objects, and inwhich directions FES can move the arm. Approach. We computed force production predictionsfor a person with high tetraplegia and an FES neuroprosthesis used to activate muscles in hershoulder and arm. We developed Gaussian process regression models of the force produced at theend of the forearm when stimulating individual muscles at different wrist positions in the person’sworkspace. For any given wrist position, we predicted all possible forces a person can produceby any combination of individual muscles. Based on the force predictions, we determined if FEScould produce force sufficient to overcome passive forces to hold a wrist position, the maximumforce FES could produce in all directions, and the set of directions in which FES could move thearm. To estimate the error in our predictions, we then compared our force predictions based onsingle-muscle models to the actual forces produced when stimulating combinations of the person’smuscles. Main results. Our models classified the person’s ability to hold static arm positions correctlyfor 83% (Session #1) and 69% (Session #2) for 39 wrist positions over two sessions. We predictedthis person’s ability to produce force at the end of her arm with an RMS error of 5.5 N and thepercent of directions for which FES could achieve motion with RMS error of 10%. The accuracyof these predictions is similar to that found in the literature for FES systems with fewer degrees offreedom and fewer muscles. Significance. These person and device-specific predictions of functionalcapabilities of the arm allow neuroprosthesis developers to set achievable functional objectives forthe systems they develop. These predictions can potentially serve as a screening tool for cliniciansto use in planning neuroprosthetic interventions, greatly reducing the risk and uncertainty in suchinterventions.
机译:目的。这项研究的目的是证明在功能性电刺激(FES)人工关节置换术驱动下瘫痪手臂的力量产生能力的特定于人的预测。这些预测使我们能够确定人的工作空间中每个手的位置,FES激活的肌肉是否可以产生足够的力来抵抗重力和其他被动力来保持手臂,该手臂可能对外部物体施加的力的大小,以及其中FES可以移动手臂的方向。方法。我们计算了患有四肢瘫痪和FES神经假体的人的力量产生预测,该假肢用于激活肩部和手臂的肌肉。我们开发了高斯过程回归模型,用于在前臂末端刺激人的工作空间中不同腕部位置处的单个肌肉时产生的力。对于任何给定的腕部位置,我们预测一个人可以通过任何单独的肌肉组合产生的所有可能力。基于力的预测,我们确定FES是否可以产生足以克服被动力以保持腕部位置的力,FES可以在所有方向上产生的最大力以及FES可以在其中移动手臂的一组方向。为了估算预测中的误差,我们将基于单肌肉模型的力量预测与刺激人的肌肉组合时产生的实际力量进行了比较。主要结果。我们的模型对两个阶段中39个手腕位置的正确姿势分别为83%(会话1)和69%(会话2)。我们预测了此人在手臂末端产生力的能力,RMS误差为5.5 N,FES可以实现运动的方向百分比为RMS误差为10%。这些预测的准确性与文献中自由度较少,肌肉较少的FES系统的准确性相似。意义。这些人和设备对手臂功能能力的特定预测使神经假体开发人员可以为他们开发的系统设置可实现的功能目标。这些预测可能会成为临床医生用于计划神经假体干预的筛查工具,从而大大降低此类干预的风险和不确定性。

著录项

  • 来源
    《Journal of neural engineering》 |2020年第1期|016051.1-016051.13|共13页
  • 作者

    Eric M Schearer; Derek N Wolf;

  • 作者单位

    Center for Human-Machine Systems Cleveland State University Cleveland United States of America Cleveland Functional Electrical Stimulation Center Cleveland United States of America MetroHealth Medical Center Department of Physical Medicine and Rehabilitation Cleveland United States of America;

    Center for Human-Machine Systems Cleveland State University Cleveland United States of America Cleveland Functional Electrical Stimulation Center Cleveland United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    spinal cord injury; machine learning; muscle strength; rehabilitation outcome assessment; assistive technology;

    机译:脊髓损伤;机器学习肌肉力量康复结果评估;辅助技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号