首页> 外文期刊>Journal of network and computer applications >SDRS: A stable data-based recruitment system in IoT crowdsensing for localization tasks
【24h】

SDRS: A stable data-based recruitment system in IoT crowdsensing for localization tasks

机译:SDR:在IOT众群体中的一个稳定的数据招聘系统,用于本地化任务

获取原文
获取原文并翻译 | 示例

摘要

Mobile Crowdsensing (MCS), an important component of the Internet of Things (IoT), is a paradigm which utilizes people carrying smart devices, referred to as "workers", to perform various sensing tasks. A type of such tasks is localization, where the location of a certain target or event is to be found. The recruitment of the right set of workers to perform a localization task plays a paramount role in the outcome quality in terms of localization time, energy, cost, and accuracy. The stability of workers in MCS, which is defined as their spatio-temporal availability, makes the problem of localization more complex, since such tasks are continuous. In this work, a novel Stable Data-based Recruitment System (SDRS) for localization tasks is proposed, which-a) integrates a new data-based recruitment parameter that dynamically exploits data readings to guide the recruitment system into selecting informative workers, while considering their mobility; b) presents a stable coverage assessment method that considers range-free sensors and the mobility of workers; and c) integrates a two-phase recruitment approach that is optimized using greedy and genetic methods. The testing and evaluation of the proposed approach is conducted using datasets of MCS workers and compared with existing benchmarks. The results demonstrate that the proposed approach efficiently and reliably leads to a speedy localization, with high outcome quality.
机译:移动人群(MCS)是一种重要组成部分的东西(IOT),是一种利用携带智能设备的人员,称为“工人”,执行各种传感任务。一种类型的任务是本地化,其中要找到某个目标或事件的位置。在本地化时间,能源,成本和准确性方面,招聘拟职工人才能执行本地化任务在结果质量方面发挥着重要作用。 MCS中工人的稳定性被定义为它们的时空可用性,使本地化问题更复杂,因为此类任务是连续的。在这项工作中,提出了一种用于本地化任务的新型稳定数据的招聘系统(SDR),其中-A)集成了一个新的基于数据的招聘参数,该参数动态利用数据读数来指导招聘系统在考虑时选择信息职工,以指导招聘系统他们的流动性; b)提出了一种稳定的覆盖评估方法,其考虑无距离传感器和工人的移动性; C)整合了一种经过贪婪和遗传方法优化的两相招聘方法。使用MCS工人的数据集进行所提出的方法的测试和评估,并与现有的基准进行比较。结果表明,拟议的方法有效可靠地导致快速的本地化,具有高结果质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号