首页> 外文期刊>Journal of network and computer applications >Tensor based framework for Distributed Denial of Service attack detection
【24h】

Tensor based framework for Distributed Denial of Service attack detection

机译:基于卷的分布式拒绝服务攻击检测框架

获取原文
获取原文并翻译 | 示例

摘要

Distributed Denial of Service (DDoS) attacks are one of the most important security threats, since multiple compromised systems perform massive attacks over a victim, overwhelming its bandwidth and/or resources. Such attacks can be detected, for example, by using supervised machine learning based solutions previously trained on large DDoS attack datasets in order to automatically identify malicious patterns present in the incoming traffic. In addition, since large datasets show inherent multidimensional structures, tensor based detection techniques can outperform the matrix based counterparts. In this context, the development of a DDoS attack detection framework which exploits both machine learning and tensor based approaches is crucial. To face this challenge, this paper proposes a novel tensor based framework for DDoS attack detection using concepts of multiple denoising, tensor decomposition and machine learning supervised classification. Moreover, we also propose an extension of the recent Multiple Denoising algorithm such that the noise present in the dataset instances is more efficiently attenuated. Finally, we validate the effectiveness of our proposed framework through comparison with state-of-the-art low-rank approximation techniques as well as with related works. The proposed approach outperforms its competitor schemes in terms of accuracy, detection rate and false alarm rate.
机译:分布式拒绝服务(DDOS)攻击是最重要的安全威胁之一,因为多个受损系统对受害者进行大规模攻击,压倒性地攻击和/或资源。例如,可以通过使用先前在大型DDOS攻击数据集上培训的基于监督的机器学习的基于Solutions来检测这种攻击,以便自动识别出现传入流量中存在的恶意模式。另外,由于大型数据集显示了固有的多维结构,因此基于卷的检测技术可以优于基于矩阵的对应物。在这种情况下,开发DDOS攻击检测框架,用于利用机器学习和基于卷的方法是至关重要的。要面对这一挑战,本文提出了一种使用多个去噪,张量分解和机器学习监督分类的概念的DDOS攻击检测的新型张量框架。此外,我们还提出了近期多个去噪算法的延伸,使得数据集实例中存在的噪声更有效地衰减。最后,我们通过与最先进的低秩近似技术以及相关工程来验证我们提出的框架的有效性。在准确性,检测率和误报率方面,所提出的方法优于竞争对手方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号