首页> 外文期刊>Journal of network and computer applications >A mobile malware detection method using behavior features in network traffic
【24h】

A mobile malware detection method using behavior features in network traffic

机译:使用网络流量中的行为特征的移动恶意软件检测方法

获取原文
获取原文并翻译 | 示例

摘要

Android has become the most popular mobile platform due to its openness and flexibility. Meanwhile, it has also become the main target of massive mobile malware. This phenomenon drives a pressing need for malware detection. In this paper, we propose a lightweight framework for Android malware identification. Network traffic generated by mobile app is mirrored from the wireless access point to the server for data analysis. All data analysis and malware detection are performed on the server side, which consumes minimum resources on mobile devices with minimum impacts to user experience. Due to the difficulty in identifying disparate malicious behaviors of malware from the network traffic, our method performs a multi-level network traffic analysis, gathering as many features of network traffic as necessary. The proposed method combines network traffic analysis with machine learning algorithm (C4.5) that is capable of identifying Android malware with high accuracy. In an evaluation with 8,312 benign apps and 5,560 malware samples, our method performs better than other state-of-the-art approaches, and especially when combining two detection mechanisms, it achieves a detection rate of 97.89%. In addition, for the benefit of user, this framework not only displays the final detection results, but also analyzes the behind-the-curtain reason of malicious results. The result explanation also reveals insightful behavioral characteristics of mobile malware.
机译:Android由于其开放性和灵活性而成为最受欢迎的移动平台。同时,它也成为大规模移动恶意软件的主要目标。这种现象驱动了对恶意软件检测的压力。在本文中,我们为Android Malware识别提出了一种轻量级框架。移动应用程序生成的网络流量从无线接入点镜像到服务器以进行数据分析。所有数据分析和恶意软件检测都在服务器端执行,这在移动设备上消耗最低资源,对用户体验最小的影响。由于难以从网络流量识别恶意软件的不同恶意行为,我们的方法执行多级网络流量分析,根据需要收集网络流量的许多功能。该方法将网络流量分析与机器学习算法(C4.5)相结合,能够高精度地识别Android恶意软件。在评估8,312良性应用和5,560个恶意软件样本中,我们的方法比其他最先进的方法更好,特别是在组合两个检测机制时,它达到97.89%的检出率。此外,为了用户的好处,此框架不仅显示了最终的检测结果,还可以分析恶意结果的后面的幕后原因。结果说明还揭示了移动恶意软件的富有识别行为特征。

著录项

  • 来源
  • 作者单位

    Univ Jinan Sch Informat Sci & Engn Jinan Shandong Peoples R China|Shandong Prov Key Lab Network Based Intelligent C Jinan Shandong Peoples R China;

    Univ Jinan Sch Informat Sci & Engn Jinan Shandong Peoples R China|Shandong Prov Key Lab Network Based Intelligent C Jinan Shandong Peoples R China;

    Univ Nebraska Lincoln Lincoln NE USA;

    Univ Jinan Sch Informat Sci & Engn Jinan Shandong Peoples R China|Shandong Prov Key Lab Network Based Intelligent C Jinan Shandong Peoples R China;

    Univ Jinan Sch Informat Sci & Engn Jinan Shandong Peoples R China|Shandong Prov Key Lab Network Based Intelligent C Jinan Shandong Peoples R China;

    Univ Jinan Sch Informat Sci & Engn Jinan Shandong Peoples R China|Shandong Prov Key Lab Network Based Intelligent C Jinan Shandong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Android malware detection; Network traffic; Machine learning;

    机译:Android恶意软件检测;网络流量;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号