首页> 外文期刊>Journal of network and computer applications >A personalized e-course composition based on a genetic algorithm with forcing legality in an adaptive learning system
【24h】

A personalized e-course composition based on a genetic algorithm with forcing legality in an adaptive learning system

机译:基于遗传算法的自适应学习系统中基于合法性的个性化电子课程组合

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a personalized e-course composition based on a genetic aigorithm with forcing legality (called GA~*) in adaptive learning systems, which efficiently and accurately finds appropriate e-learning materials in the database for individual learners. The forcing legality operation not only reduces the search space size and increases search efficiency but also is more explicit in finding the best e-course composition in a legal solution space. In serial experiments, the forcing legality operation is applied in Chu et al.'s the particle swarm optimization (called PSO~*) and Dheeban et al.'s the improved particle swarm optimization (called RPSO~*) to show the forcing legality can speed up the computational time and reduce the computational complexity of aigorithm. Furthermore, GA~* regardless of the number of students or the number of materials in the database, to compose a personalized e-course within a limited time is much more efficient and accurate than PSO~* and RPSO~*. For the experiment increasing the number of students to 1200, the average improvement ratios of errors (Seaming concept error, materials difficulty error, learning time error), fitness value, stability, and execution time are above 96%, 79%. 90%. and 10%, respectively. For the experiment increasing the number of materials to 500 and the execution time set to the shortest execution time of RPSO*, the average improvement ratios of errors (learning concept error, materials difficulty error, learning time error), fitness value, and stability are above 97%, 51%, and 80%, respectively. Therefore, GA~* is able to enhance the qisaiity of personalized e-course compositions in adaptive learning environments.
机译:本文提出了一种基于遗传算法的个性化电子课程结构,并在自适应学习系统中强制采用合法性(称为GA〜*),从而可以有效,准确地在数据库中为各个学习者找到合适的电子学习资料。强制合法性操作不仅减小了搜索空间的大小并提高了搜索效率,而且在法律解决方案空间中寻找最佳的电子课程组成方面更为明确。在串行实验中,强制合法性运算被应用于Chu等人的粒子群优化算法(称为PSO〜*)和Dheeban等人的改进粒子群算法优化方法(称为RPSO〜*),以证明强制合法性可以加快计算时间并降低算法的计算复杂度。此外,无论学生人数或数据库中的资料数量如何,GA〜*都比PSO〜*和RPSO〜*效率更高,更准确,而在有限的时间内撰写个性化的电子课程。对于将学生人数增加到1200人的实验,错误的平均改善率(接缝概念错误,材料难度错误,学习时间错误),适应度值,稳定性和执行时间均高于96%,79%。 90%。和10%。对于将材料数量增加到500并将执行时间设置为RPSO *的最短执行时间的实验,平均错误改善率(学习概念错误,材料难度错误,学习时间错误),适应度值和稳定性为分别高于97%,51%和80%。因此,GA〜*能够增强自适应学习环境中个性化电子课程组合的趣味性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号