首页> 外文期刊>Journal of network and computer applications >Fairness in Cognitive Radio Networks: Models, measurement methods, applications, and future research directions
【24h】

Fairness in Cognitive Radio Networks: Models, measurement methods, applications, and future research directions

机译:认知无线电网络中的公平性:模型,测量方法,应用和未来研究方向

获取原文
获取原文并翻译 | 示例

摘要

Fairness means to maintain the property of equity or equivalence. It is the distribution, sharing, allocation, and supply of different working metrics fairly such as bandwidth, throughput, power, utilization, resources, frequency, rate, time slot, and spectrum in any wireless network. For every network including Cognitive Radio Networks (CRNs), fairness plays a significant role. In fact, CRNs provides an intelligent, autonomous and dynamic sensing environment performing different operations, through which unlicensed users get the benefit to use licensed spectrum. In CRNs, the operations performed on spectrum includes sensing, mobility, sharing and management. However, the existence of fairness maintains the equilibrium in these different operations of CRNs. Similarly, the stability of Cognitive Radio (CR) system or network rely on fairness. So, it has a great importance in the performance of CRNs. The performance of CRNs depends on the parameters like throughput, efficiency, utilization, power consumption, bandwidth, Quality of Service (QoS), scheduling, and some other aspects related to channel and spectrum in CRNs. In this article, fairness is discussed in the context of CRNs. We provide a comprehensive survey of fairness including measuring parameters, fairness models, fairness issues, and discussion on different schemes proposed in the literature. We furthermore present common issues, challenges and future research directions for CRNs in fairness perspective. (C) 2016 Elsevier Ltd. All rights reserved.
机译:公平是指维护公平或对等的财产。它公平地分配,共享,分配和提供不同的工作指标,例如任何无线网络中的带宽,吞吐量,功率,利用率,资源,频率,速率,时隙和频谱。对于包括认知无线电网络(CRN)在内的每个网络,公平都起着重要作用。实际上,CRN提供了执行不同操作的智能,自主和动态感测环境,未经许可的用户可通过该环境受益于使用许可频谱。在CRN中,在频谱上执行的操作包括感测,移动性,共享和管理。但是,公平的存在在CRN的这些不同操作中保持了平衡。同样,认知无线电(CR)系统或网络的稳定性也取决于公平性。因此,它对CRN的性能非常重要。 CRN的性能取决于参数,例如吞吐量,效率,利用率,功耗,带宽,服务质量(QoS),调度以及与CRN中的信道和频谱相关的其他一些方面。在本文中,将在CRN的上下文中讨论公平性。我们对公平进行了全面的调查,包括测量参数,公平模型,公平问题以及对文献中提出的不同方案的讨论。我们还从公平的角度介绍了CRN的常见问题,挑战和未来的研究方向。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号