首页> 外文期刊>Journal of network and computer applications >A reliable and cost-efficient auto-scaling system for web applications using heterogeneous spot instances
【24h】

A reliable and cost-efficient auto-scaling system for web applications using heterogeneous spot instances

机译:使用异构竞价型实例的Web应用程序的可靠,经济高效的自动缩放系统

获取原文
获取原文并翻译 | 示例

摘要

Cloud providers sell their idle capacity on markets through an auction-like mechanism to increase their return on investment. The instances sold in this way are called spot instances. In spite that spot instances are usually 90% cheaper than on-demand instances, they can be terminated by provider when their bidding prices are lower than market prices. Thus, they are largely used to provision fault-tolerant applications only. In this paper, we explore how to utilize spot instances to provision web applications, which are usually considered as availability-critical. The idea is to take advantage of differences in price among various types of spot instances to reach both high availability and significant cost saving. We first propose a fault-tolerant model for web applications provisioned by spot instances. Based on that, we devise novel cost-efficient auto-scaling polices that comply with the defined fault-tolerant semantics for hourly billed cloud markets. We implemented the proposed model and policies both on a simulation testbed for repeatable validation and Amazon EC2. The experiments on the simulation testbed and EC2 show that the proposed approach can greatly reduce resource cost and still achieve satisfactory Quality of Service (QoS) in terms of response time and availability. (C) 2016 Elsevier Ltd. All rights reserved.
机译:云提供商通过类似拍卖的机制在市场上出售其闲置容量,以提高其投资回报率。以这种方式出售的实例称为竞价型实例。尽管现货实例通常比按需实例便宜90%,但当竞标价格低于市场价格时,可以由提供商终止。因此,它们在很大程度上仅用于供应容错应用程序。在本文中,我们探索了如何利用竞价型实例来配置Web应用程序,通常将其视为对可用性至关重要的。该想法是利用各种竞价型实例之间的价格差异来达到高可用性和显着的成本节省。我们首先为竞价型实例提供的Web应用程序提出一个容错模型。在此基础上,我们针对每小时计费的云市场设计了符合定义的容错语义的新颖,经济高效的自动扩展策略。我们在可重复验证的模拟测试台和Amazon EC2上实施了建议的模型和策略。在模拟测试平台和EC2上进行的实验表明,该方法可以大大降低资源成本,并且在响应时间和可用性方面仍能达到令人满意的服务质量(QoS)。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号