首页> 外文期刊>Journal of network and computer applications >Energy-balanced compressive data gathering in Wireless Sensor Networks
【24h】

Energy-balanced compressive data gathering in Wireless Sensor Networks

机译:无线传感器网络中能量平衡的压缩数据收集

获取原文
获取原文并翻译 | 示例

摘要

Compressive Sensing (CS) can use fewer samples to recover a great number of original data, which have a sparse representation in a proper basis. For energy-constrained Wireless Sensor Networks (WSNs), CS provides an effective data gathering approach. Gaussian random matrix satisfies Restricted Isometry Property (RIP) with high probability. The class of matrices is usually selected as the measurement matrix for compressive data gathering in WSNs. However, they are dense, and the computational complexity is higher. On the other side, sparse binary matrix with a fixed number of nonzero entries in each column satisfies RIP-1 property. Due to the higher sparsity, the class of sparse binary matrix is chosen as the measurement matrix in the paper. In order to adapt to the dynamic change of network topology, we design a mobile agent based compressive data gathering algorithm (MA-Greedy algorithm), where each sensor node is uniformly visited in M measurements. Coefficient of Variation (CV) is proposed to evaluate the balance of energy consumption. The numerical experiments show the proposed algorithm is superior to other algorithms (i.e. non-CS, plain-CS, Hybrid-CS, and Distributed Compressive Sparse Sampling (DCSS)) in terms of energy balance. Moreover, we discover the performance of reconstructing sparse zero-one signals by sparse binary matrix, which is used in the proposed MA-Greedy algorithm, is better than that by Gaussian random matrix when Basis Pursuit (BP) algorithm is used for signal recovery. (C) 2015 Elsevier Ltd. All rights reserved.
机译:压缩感测(CS)可以使用较少的样本来恢复大量原始数据,这些原始数据在适当的基础上具有稀疏的表示形式。对于能量受限的无线传感器网络(WSN),CS提供了有效的数据收集方法。高斯随机矩阵极有可能满足受限等距特性(RIP)。通常选择矩阵类别作为WSN中压缩数据收集的测量矩阵。但是,它们很密集,并且计算复杂度更高。另一方面,每列中具有固定数量的非零条目的稀疏二进制矩阵满足RIP-1属性。由于稀疏度较高,本文选择稀疏二进制矩阵作为度量矩阵。为了适应网络拓扑的动态变化,我们设计了一种基于移动代理的压缩数据收集算法(MA-Greedy算法),其中每个传感器节点在M次测量中被统一访问。提出了变异系数(CV)来评估能量消耗的平衡。数值实验表明,提出的算法在能量平衡方面优于其他算法(即非CS,平原CS,混合CS和分布式压缩稀疏采样(DCSS))。此外,我们发现,当将基本追踪(BP)算法用于信号恢复时,所提出的MA-Greedy算法中使用的稀疏二进制矩阵重建稀疏零一信号的性能要优于高斯随机矩阵。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号