首页> 外文期刊>Journal of network and computer applications >Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring
【24h】

Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring

机译:时间同步误差对WSN中结构健康监测的模式形状识别和损伤检测/定位的影响

获取原文
获取原文并翻译 | 示例

摘要

Time synchronization in wireless sensor networks (WSNs) is a critical challenge for any distributed system such as WSNs for structural health monitoring (SHM). In SHM, mode shape identification, damage detection and damage localization are sensitive to time synchronization errors (TSEs). Indeed, the errors, due to the time shift between the incoming raw data from each sensor node, may hugely affect the data integrity and then the mode shape identification of the structure under analysis. In this paper, we characterize the impact of TSE on the modal analysis, damage detection and damage localization using frequency domain decomposition (FDD) implemented in a semi-local manner. In order to decrease the size of the transmitted data by the sensor nodes and reduce the processing load and the needed storage capacity on the central unit, we adopt a semi-local processing approach where each sensor node partially processed data and transmit it to a central unit for further processing such as mode shape identification, damage detection and damage localization. We adopt the model where each sensor node performs the Fast Fourier Transform (FFT) of the measured vibration signal and the transmission of the FFT values to a central unit or to a cluster head for further processing. The results show that TSE has a strong impact on the mode shape identification, damage detection and damage localization. Furthermore, results show that semi-local processing is more sensitive to TSE compared to centralized processing.
机译:对于任何分布式系统(例如用于结构健康监控(SHM)的WSN)而言,无线传感器网络(WSN)中的时间同步都是一项严峻的挑战。在SHM中,模式形状识别,损伤检测和损伤定位对时间同步错误(TSE)敏感。确实,由于来自每个传感器节点的原始数据之间的时间偏移而导致的错误可能会极大地影响数据完整性,进而影响所分析结构的模式形状识别。在本文中,我们使用半局部方式实现的频域分解(FDD)表征了TSE对模态分析,损伤检测和损伤定位的影响。为了减小传感器节点传输的数据的大小并减少中央单元上的处理负荷和所需的存储容量,我们采用半本地处理方法,其中每个传感器节点部分处理数据并将其传输到中央用于进一步处理的单元,例如模式形状识别,损伤检测和损伤定位。我们采用的模型中,每个传感器节点都对测得的振动信号执行快速傅立叶变换(FFT),并将FFT值传输到中央单元或簇头,以进行进一步处理。结果表明,TSE对模式形状识别,损伤检测和损伤定位有很大影响。此外,结果表明,与集中式处理相比,半本地处理对TSE更敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号