首页> 外文期刊>Journal of network and computer applications >A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks
【24h】

A bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks

机译:基于贝叶斯推理的检测机制可防御医疗智能手机网络遭受内部攻击

获取原文
获取原文并翻译 | 示例

摘要

With the increasing digitization of the healthcare industry, a wide range of devices (including traditionally non networked medical devices) are Internet- and inter-connected. Mobile devices (e.g. smartphones) are one common device used in the healthcare industry to improve the quality of service and experience for both patients and healthcare workers, and the underlying network architecture to support such devices is also referred to as medical smartphone networks (MSNs). MSNs, similar to other networks, are subject to a wide range of attacks (e.g. leakage of sensitive patient information by a malicious insider). In this work, we focus on MSNs and present a compact but efficient trust-based approach using Bayesian inference to identify malicious nodes in such an environment. We then demonstrate the effectiveness of our approach in detecting malicious nodes by evaluating the deployment of our proposed approach in a real-world environment with two healthcare organizations.
机译:随着医疗保健行业数字化的不断增长,各种各样的设备(包括传统上非联网的医疗设备)都通过Internet互连。移动设备(例如,智能手机)是医疗行业中用于提高患者和医护人员的服务质量和体验质量的一种常见设备,并且支持此类设备的基础网络体系结构也称为医疗智能手机网络(MSN) 。与其他网络类似,MSN遭受广泛的攻击(例如,恶意内部人员泄漏敏感患者信息)。在这项工作中,我们专注于MSN,并提出了一种紧凑但有效的基于信任的方法,该方法使用贝叶斯推理来识别这种环境中的恶意节点。然后,我们通过评估我们建议的方法在具有两个医疗保健组织的真实环境中的部署,来证明我们的方法在检测恶意节点中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号