首页> 外文期刊>Journal of network and computer applications >Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model
【24h】

Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model

机译:使用基于监督的入侵敏感度的信任管理模型来增强协作入侵检测网络以防止内部攻击

获取原文
获取原文并翻译 | 示例

摘要

To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which are utilized by insider attacks (e.g., betrayal attacks). In our previous research, we developed a notion of intrusion sensitivity and identified that it can help improve the detection of insider attacks, whereas it is still a challenge for these nodes to automatically assign the values. In this article, we therefore aim to design an intrusion sensitivity-based trust management model that allows each IDS to evaluate the trustworthiness of others by considering their detection sensitivities, and further develop a supervised approach, which employs machine learning techniques to automatically assign the values of intrusion sensitivity based on expert knowledge. In the evaluation, we compare the performance of three different supervised classifiers in assigning sensitivity values and investigate our trust model under different attack scenarios and in a real wireless sensor network. Experimental results indicate that our trust model can enhance the detection accuracy of malicious nodes and achieve better performance as compared with similar models.
机译:为了防御复杂的攻击,已经开发了协作入侵检测网络(CIDN)来提高检测准确性,这使IDS可以收集信息并向他人学习经验。但是,这种网络容易受到内部攻击(例如,背叛攻击)利用的恶意节点的攻击。在我们之前的研究中,我们提出了入侵敏感度的概念,并确定它可以帮助改进内部攻击的检测,而这些节点自动分配值仍然是一个挑战。因此,在本文中,我们旨在设计一种基于入侵敏感度的信任管理模型,该模型允许每个IDS通过考虑其他人的检测敏感度来评估其他人的可信度,并进一步开发一种受监督的方法,该方法采用机器学习技术来自动分配值基于专家知识的入侵敏感性评估在评估中,我们比较了三种不同的监督分类器在分配敏感度值方面的性能,并研究了在不同攻击场景和真实无线传感器网络中的信任模型。实验结果表明,与同类模型相比,我们的信任模型可以提高恶意节点的检测精度,并获得更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号