首页> 外文期刊>Journal of multiple-valued logic and soft computing >A New Possibilistic Mean - Variance Model Based on the Principal Components Analysis: An Application on the Turkish Holding Stocks
【24h】

A New Possibilistic Mean - Variance Model Based on the Principal Components Analysis: An Application on the Turkish Holding Stocks

机译:基于主成分分析的新可能性平均值模型:土耳其持有股票的应用

获取原文
获取原文并翻译 | 示例

摘要

Possibility Theory is a great tool to deal with the imprecise probability. However, the possibilistic counterpart of the mean - variance (MV) model has serious shortcomings. Thus, we propose a new possibilistic MV model, which depends on the Principal Components Analysis. The proposed model enables to incorporate subjective judgments into the portfolio selection. In addition, it captures the asymmetry in the return data unlike the MV model. The proposed model is also tractable as the MV model since it can be expressed as a concave quadratic maximization problem. After laying down the theoretical points, we illustrate it by using a real data set of six holding stocks trading on the Borsa Istanbul (BIST). We also compare the profitability and performance results of the proposed model and the MV model.
机译:可能性理论是处理不精确概率的伟大工具。然而,平均方差(MV)模型的可能性对应物具有严重的缺点。因此,我们提出了一种新的可能性MV模型,这取决于主成分分析。拟议的模型使得能够将主观判断纳入投资组合选择。此外,与MV模型不同,它捕获返回数据中的不对称性。所提出的模型也是MV模型的易用,因为它可以表达为凹的二次最大化问题。在铺设理论点后,我们通过在罗宋斯伊斯坦布尔(BIST)上使用六个持有股票交易的真实数据集来说明它。我们还比较所提出的模型和MV模型的盈利能力和性能结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号