首页> 外文期刊>Journal of multiple-valued logic and soft computing >New Robust Portfolio Selection Models Based on the Principal Components Analysis: An Application on the Turkish Holding Stocks
【24h】

New Robust Portfolio Selection Models Based on the Principal Components Analysis: An Application on the Turkish Holding Stocks

机译:基于主成分分析的稳健证券投资新模型:在土耳其控股股票中的应用

获取原文
获取原文并翻译 | 示例

摘要

Robust optimization is a significant tool to deal with the uncertainty of parameters. However, the robust versions of the mean - variance (MV) model have serious shortcomings. Thus, we propose new robust versions of the MV model and its possibilistic counterpart, based on the Principal Component Analysis. We also derive their analytical solutions when the risk-free asset and short positioning are allowed. In addition, we suggest an eigenvalue approach to manage their conservativeness. After laying down the theoretical points, we illustrate them by using a real data set of six holding stocks trading on the Borsa Istanbul (BIST). We also compare the profitability and performance results of the existing models and the proposed robust models.
机译:稳健的优化是处理参数不确定性的重要工具。但是,均值-方差(MV)模型的健壮版本存在严重缺陷。因此,基于主成分分析,我们提出了MV模型的新的健壮版本及其可能的对应版本。当允许无风险资产和空头头寸时,我们还推导了他们的分析解决方案。此外,我们建议采用特征值方法来管理其保守性。在列出理论要点之后,我们通过使用在伊斯坦布尔证券交易所(BIST)上交易的六只持股的真实数据集来说明它们。我们还比较了现有模型和建议的稳健模型的盈利能力和绩效结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号