首页> 外文期刊>Journal of multiple-valued logic and soft computing >Exploring Answer Information for Question Classification in Community Question Answering
【24h】

Exploring Answer Information for Question Classification in Community Question Answering

机译:在社区问题解答中探索答案信息以进行问题分类

获取原文
获取原文并翻译 | 示例

摘要

Community question answer (CQA) services, such as Yahoo! Answers and Baidu Knows, have been becoming more and more nourishing. When users submit questions to such CQA sites, they need to choose the nearest category. Choosing category is difficult for users. The user can post the questions without choosing the suitable category. We can classify the questions using the answers, since the questions have been settled. Therefore, question classification is very important for CQA sites. In this paper, we propose two methods to solve these problems. Firstly, we present a general classification model, which combines the question classifier and answer classifier using the surface text. Secondly, we enrich questions by leveraging answer semantic knowledge to tackle the data sparseness. We conducted the experiments using 5-fold cross validation on the corpus of Yahoo! Answers with ten categories and showed the effectiveness of our approaches.
机译:社区问题解答(CQA)服务,例如Yahoo!答案和百度知道,已经越来越营养。当用户向此类CQA网站提交问题时,他们需要选择最近的类别。用户很难选择类别。用户无需选择合适的类别即可发布问题。由于问题已经解决,我们可以使用答案对问题进行分类。因此,问题分类对于CQA网站非常重要。在本文中,我们提出了两种方法来解决这些问题。首先,我们提出了一个通用的分类模型,该模型使用表面文本将问题分类器和答案分类器结合在一起。其次,我们通过利用答案语义知识来解决数据稀疏性来丰富问题。我们使用Yahoo!语料库的5倍交叉验证进行了实验。十个类别的答案,表明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号