首页> 外文期刊>Journal of multiple-valued logic and soft computing >Solving the Multidimensional Maximum Bisection Problem by a Genetic Algorithm and Variable Neighborhood Search
【24h】

Solving the Multidimensional Maximum Bisection Problem by a Genetic Algorithm and Variable Neighborhood Search

机译:用遗传算法和可变邻域搜索求解多维最大二等分问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the application of the two metaheuristic approaches: a Genetic Algorithm (GA) and a Variable Neighborhood Search (VNS), on an NP-hard optimization problem: Multi-dimensional Maximum Bisection Problem (MDMBP).MDMBP is a generalization of the Maximum Bisection Problem (MBP), where each graph edge instead of having a singular weight, has a vector of weights. The GA is constructed on a modified integer encoding of individuals, where only the feasible solutions are generated, which allows the application of standard genetic operators. A suitable system of neighborhoods based on changing the component for an increasing number of vertices is implemented in the proposed VNS. Both GA and VNS use two types of local search procedures, both based on swapping the components of pairs of vertices. Our computational results were obtained on MDMBP instances in (he literature with up to 1000 vertices and 350000 edges, and the well-known MBP G-set instances with up to 20000 vertices and 41459 edges. The obtained results are statistically analysed and compared with the results of the existing methods for solving MDMBP and MBP.
机译:在本文中,我们考虑将两种元启发式方法(遗传算法(GA)和可变邻域搜索(VNS))应用于NP硬优化问题:多维最大二等分问题(MDMBP)。最大二等分问题(MBP)的一般化,其中每个图的边缘都具有权重向量,而不是具有奇异的权重。遗传算法是基于对个体进行修改的整数编码而构建的,其中仅生成可行的解,这允许应用标准遗传算子。在提出的VNS中,实现了一种基于改变分量以增加顶点数量的邻域系统。 GA和VNS都使用两种类型的本地搜索过程,两者均基于交换顶点对的成分。我们的计算结果是从(在他的文献中最多有1000个顶点和350000个边,以及著名的MBP G-set实例中有最多20000个顶点和41459个边)的MDMBP实例中获得的。解决MDMBP和MBP的现有方法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号