首页> 外文期刊>Journal of multiple-valued logic and soft computing >Haar Wavelet Transforms and Haar Spectral Transform Decision Diagrams for Switching and Multiple-Valued Functions
【24h】

Haar Wavelet Transforms and Haar Spectral Transform Decision Diagrams for Switching and Multiple-Valued Functions

机译:交换和多值函数的Haar小波变换和Haar频谱变换决策图

获取原文
获取原文并翻译 | 示例

摘要

In spectral interpretation, decision diagrams (DDs) are defined in terms of some spectral transforms. For a given DD, the related transform is determined by an analysis of expansion rules used in the nodes and the related labels of edges. The converse task, design of a DD in terms of a given spectral transform is relatively easy to solve for Kronecker product representable spectral transforms. However, in other cases, it appears a problem of decomposition of basic functions in spectral transform to determine the corresponding expansion rules and labels at the edges. We point out that this problem relates to the assignment of nodes in Pseudo-Kronecker DDs (PKDDs). Then, we show that in the case of Haar transform, the expansion rules and assignment of nodes in Haar Spectral transform DDs (HSTDDs) can be determined from a study and comparison of FFT and DD methods for calculation of the Haar spectrum. This consideration permits to generalize the definition of HSTDDs to multiple-valued (MV) functions considered as functions in finite fields or as subsets of complex-valued functions. Conversely, from such defined HSTDDs, we derive various Haar transforms for MV functions related to Fourier series and polynomial expressions for MV functions.
机译:在频谱解释中,决策图(DDs)是根据某些频谱变换定义的。对于给定的DD,通过分析节点中使用的扩展规则和边缘的相关标签来确定相关变换。相反的任务,根据给定的频谱变换设计DD相对容易解决Kronecker积可表示的频谱变换。然而,在其他情况下,在频谱变换中确定基本函数的分解来确定边缘处的相应扩展规则和标记似乎是一个问题。我们指出此问题与伪Kronecker DD(PKDD)中的节点分配有关。然后,我们表明,在Haar变换的情况下,可以通过研究和比较FFT和DD方法计算Haar频谱来确定Haar频谱变换DD(HSTDD)中的扩展规则和节点分配。这种考虑允许将HSTDD的定义概括为多值(MV)函数,这些函数被视为有限字段中的函数或复值函数的子集。相反,从这样定义的HSTDD中,我们得出了与傅里叶级数相关的MV函数的各种Haar变换以及MV函数的多项式表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号