首页> 外文期刊>Journal of multiple-valued logic and soft computing >Interval-valued Blind Source Separation Applied to AI-based Prognostic Fault Detection of Aircraft Engines
【24h】

Interval-valued Blind Source Separation Applied to AI-based Prognostic Fault Detection of Aircraft Engines

机译:区间值盲源分离技术在基于AI的飞机发动机故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

The design of user-friendly plots of Equipment Health Management (EHM) data for prognostic fault detection of aircraft engines is addressed. EHM plots link trend shift signatures, originated in cruise data of the engine being diagnosed, either with prototypes of specific known events or abnormal signatures derived from service data. Abnormalities are expressed as thresholds that must not be exceeded. EHM data, prototype and abnormality signatures are regarded as a mix of different sources and transformed with a new computational procedure that extends Blind Source Separation to interval-valued data.
机译:解决了用于飞机发动机故障诊断的设备健康管理(EHM)数据的用户友好图的设计。 EHM通过特定已知事件的原型或从服务数据得出的异常特征来链接源自被诊断发动机的巡航数据的趋势变化趋势特征。异常表示为不得超过的阈值。 EHM数据,原型和异常签名被视为不同来源的混合,并通过新的计算程序进行了转换,该程序将盲源分离扩展到间隔值数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号