首页> 外文期刊>Journal of multiple-valued logic and soft computing >The Indexing based on Multiple Visual Dictionaries for Object Based Image Retrieval
【24h】

The Indexing based on Multiple Visual Dictionaries for Object Based Image Retrieval

机译:基于多个视觉词典的基于对象的图像检索索引

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the problem of Object Based Image Retrieval (OBIR) where the goal is to search for the images containing the same object shown in the query image. The state-of-the-art approaches of large scale OBIR are based on the bag of visual words model. In the bag of visual words model, k-means clustering is performed on the space of feature descriptors to build a visual vocabulary for vector quantization, thereby we can get an inverted file indexing for fast retrieval. However, traditional k-means clustering is difficult to scale to large vocabularies. Although the approximate k-means clustering algorithm and the product quantization(PQ) are proposed to address this problem, the information loss in these methods decreases the performance of OBIR. To reduce information loss, we propose a novel approach to build multiple visual dictionaries indexing for large scale OBIR in this paper. Differing from existing methods, the proposed approach includes three novel contributions. Firstly, we use multiple visual vocabularies built in multiple sub-spaces for vector quantization instead of a single visual vocabulary. Secondly, visual dictionary indexing is proposed, which is more discriminative than inverted file indexing. Thirdly, except for the TF-IDF weighting scheme, a new weighting scheme is introduced to compute the final scores of the relevance of an image to the query more accurately. To evaluate the proposed approach, we conduct experiments on public image datasets. The experimental results demonstrate very significant improvements over the state-of-the-art approaches on these datasets.
机译:本文着重于基于对象的图像检索(OBIR)问题,其目标是搜索包含查询图像中所示的相同对象的图像。大规模OBIR的最新方法基于视觉文字模型模型。在视觉单词模型的袋中,对特征描述符的空间进行k均值聚类,以建立视觉词汇进行矢量量化,从而获得用于快速检索的倒排文件索引。但是,传统的k均值聚类很难扩展到大词汇量。尽管提出了近似k均值聚类算法和乘积量化(PQ)来解决此问题,但是这些方法中的信息丢失降低了OBIR的性能。为了减少信息丢失,本文提出了一种新颖的方法来为大型OBIR建立多个视觉词典索引。与现有方法不同,提出的方法包括三个新颖的贡献。首先,我们使用构建在多个子空间中的多个视觉词汇进行矢量量化,而不是使用单个视觉词汇。其次,提出了视觉词典索引,它比反向文件索引更具判别力。第三,除TF-IDF加权方案外,引入了新的加权方案以更精确地计算图像与查询的相关性的最终分数。为了评估提出的方法,我们对公共图像数据集进行了实验。实验结果表明,与这些数据集上的最新方法相比,有了很大的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号