首页> 外文期刊>Journal of multiple-valued logic and soft computing >Multi-Criteria Approach to Learning Object Selection Through Fuzzy AHP
【24h】

Multi-Criteria Approach to Learning Object Selection Through Fuzzy AHP

机译:通过模糊层次分析法学习目标选择的多准则方法

获取原文
获取原文并翻译 | 示例

摘要

E-content includes Learning Objects (LO) and metadata to provide sustainability, reusability, and interoperability. In order to accomplish the requirements, massive numbers of LOs are produced for learning object repositories (LOR). A LO uses metadata together with a huge amount of criteria. Due to this reason, defining the best qualified LO according to the needs is a multi-criteria decision making (MCDM) problem. Moreover, finding the most appropriate LO is a difficult task whenever the some criteria do not precisely match metadata parameters. In this study, a fuzzy analytical hierarchy process (FAHP) based MCDM method is employed to find the most suitable LO through the web-based SDUNESA LOR software. The proposed approach provides a new perspective to LO selection problem using the FAHP method. The study is illustrated with a real-world case according to computer engineering preferences. It is shown with the results that FAHP technique finds suitable LOs with a minimum consistency ratio by means of metadata values.
机译:电子内容包括学习对象(LO)和元数据,以提供可持续性,可重用性和互操作性。为了满足要求,产生了大量用于学习对象存储库(LOR)的LO。 LO会使用元数据和大量条件。由于这个原因,根据需求定义最佳合格的LO是一个多标准决策(MCDM)问题。此外,每当某些条件与元数据参数不完全匹配时,找到最合适的LO是一项艰巨的任务。在这项研究中,通过基于Web的SDUNESA LOR软件,采用了基于模糊分析层次过程(FAHP)的MCDM方法来查找最合适的LO。所提出的方法为使用FAHP方法的LO选择问题提供了新的视角。根据计算机工程的偏好,以实际案例说明了该研究。结果表明,FAHP技术通过元数据值找到具有最小一致性比率的合适LO。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号