首页> 外文期刊>Journal of multiple-valued logic and soft computing >Enhanced Order Based Single Leap Big Bang - Big Crunch Optimization Approach to Multi-Objective Gate Assignment Problem
【24h】

Enhanced Order Based Single Leap Big Bang - Big Crunch Optimization Approach to Multi-Objective Gate Assignment Problem

机译:多目标门分配问题的基于增强阶的单跳Big Bang-Big Crunch优化方法

获取原文
获取原文并翻译 | 示例

摘要

In the last few decades, rapid growth in demand for air transportation led to the development of numerous operation research practices in the airline / airport industry. The most widespread practice is the ground scheduling applications, and specifically, gate assignment optimization. An appropriate and efficient gate assignment is of great importance in airport ground operations since it plays a major role in increasing revenues. In this paper, a multi-objective gate assignment problem (MOGAP) is formulated with the objectives of maximizing gate allocation, minimizing passenger walking distance and maximizing flight to gate preference and a solution strategy based on the evolutionary Single Leap Big Bang - Big Crunch optimization method is developed. The MOGAP is a non-deterministic polynomial-time hard (NP-hard) quadratic assignment problem. In the literature, to the best of our knowledge, there is only a single effort to solve the MOGAP for obtaining a pareto front representation of solutions by utilizing nature inspired computation methods. As the major contributions of this paper, a novel multi-objective nature inspired solution technique is proposed and high fidelity problem instance generation is discussed. The effectiveness of the proposed methodology has been illustrated by comparing the simulation results of the method with the previously reported algorithm both on artificially generated problem instances and real world data obtained from Turkey's biggest airport, Ataturk International in Istanbul.
机译:在过去的几十年中,航空运输需求的快速增长导致了航空/机场行业众多运筹学实践的发展。最普遍的做法是地面调度应用,尤其是门分配优化。适当而有效的登机口分配在机场地面运营中非常重要,因为它在增加收入方面起着重要作用。本文提出了一种多目标登机口分配问题(MOGAP),其目标是最大化登机口分配,最小化乘客步行距离和最大化航班到登机口的偏好以及基于演化的单跳大爆炸-大紧缩优化的解决方案方法被开发出来。 MOGAP是一个不确定的多项式时间硬(NP-hard)二次分配问题。在文献中,就我们所知,仅用一种方法即可解决MOGAP,以利用自然启发性计算方法来获得解决方案的pareto正面表示。作为本文的主要贡献,提出了一种新颖的多目标自然启发式求解技术,并讨论了高保真问题实例的生成。通过在人工生成的问题实例以及从土耳其最大的机场阿塔图尔克国际机场获得的真实世界数据上比较该方法的仿真结果与先前报告的算法,已证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号