首页> 外文期刊>Journal of multiple-valued logic and soft computing >A Semantic and Feature Aggregated Information Retrieval Technique for Efficient Geospatial Text Document Retrieval
【24h】

A Semantic and Feature Aggregated Information Retrieval Technique for Efficient Geospatial Text Document Retrieval

机译:一种有效的地理空间文本文档检索的语义和特征汇总信息检索技术

获取原文
获取原文并翻译 | 示例

摘要

Processing the normal text is quite easier and the information can be efficiently retrieved. There are various algorithms have been already proposed for normal text retrieval. Whereas retrieving the geospatial information are very complex due to nature of the data. It needs supplementary processes to be performed. Since geospatial data contains complex information like location and direction. To effectively handle thegeospatial queries, a novel Semantic and Feature Aggregated Information Retrieval is proposed in this paper. Preliminary, there are four steps need to be perform, they are Clustering, Indexing, Retrieval and Ranking. Also, Context based Query Weighting (CQW) approach is proposed to cluster the documents present in the corpus and indexing is based on multilevel hashing. Feature Probability and Density (FPD) technique is utilized to retrieve the document which matches the user query information. The Semantic Density (SD) technique is used to rank the retrieved documents. The experimental results shows that the proposed SFAIR technique provides better results than the existing technique.
机译:处理普通文本非常容易,并且可以有效地检索信息。已经提出了用于普通文本检索的各种算法。然而,由于数据的性质,检索地理空间信息非常复杂。它需要执行补充过程。由于地理空间数据包含诸如位置和方向之类的复杂信息。为了有效地处理地理空间查询,本文提出了一种新颖的语义和特征聚合信息检索方法。初步,需要执行四个步骤,它们是聚类,索引编制,检索和排名。此外,提出了基于上下文的查询加权(CQW)方法来对语料库中存在的文档进行聚类,并且基于多级散列进行索引。特征概率和密度(FPD)技术用于检索与用户查询信息匹配的文档。语义密度(SD)技术用于对检索到的文档进行排名。实验结果表明,所提出的SFAIR技术比现有技术提供了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号