首页> 外文期刊>Journal on multimodal user interfaces >Automatic recognition of touch gestures in the corpus of social touch
【24h】

Automatic recognition of touch gestures in the corpus of social touch

机译:自动识别社交触摸语料库中的触摸手势

获取原文
获取原文并翻译 | 示例

摘要

For an artifact such as a robot or a virtual agent to respond appropriately to human social touch behavior, it should be able to automatically detect and recognize touch. This paper describes the data collection of CoST: Corpus of Social Touch, a data set containing 7805 captures of 14 different social touch gestures. All touch gestures were performed in three variants: gentle, normal and rough on a pressure sensor grid wrapped around a mannequin arm. Recognition of these 14 gesture classes using various classifiers yielded accuracies up to 60 %; moreover, gentle gestures proved to be harder to classify than normal and rough gestures. We further investigated how different classifiers, interpersonal differences, gesture confusions and gesture variants affected the recognition accuracy. Finally, we present directions for further research to ensure proper transfer of the touch modality from interpersonal interaction to areas such as human-robot interaction (HRI).
机译:为了使诸如机器人或虚拟代理之类的人工制品能够适当地响应人类的社交触摸行为,它应该能够自动检测和识别触摸。本文介绍了CoST:社交触摸语料库的数据收集,该数据集包含10种不同社交触摸手势的7805个捕获数据。所有触摸手势均以三种方式执行:在缠绕在人体手臂上的压力传感器网格上,轻柔,正常和粗糙。使用各种分类器对这14种手势类别进行识别可产生高达60%的准确度;此外,事实证明,柔和的手势比正常和粗糙的手势更难以分类。我们进一步研究了不同的分类器,人际差异,手势混淆和手势变体如何影响识别准确性。最后,我们提出了进一步研究的方向,以确保触摸方式从人际互动到人机交互(HRI)等领域的适当转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号