首页> 外文期刊>Journal of Membrane Science >Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor - II. Characterisation for the fate of the enzyme by multivariate data analysis
【24h】

Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor - II. Characterisation for the fate of the enzyme by multivariate data analysis

机译:在切向流滤膜反应器中水解乳清蛋白分离物-II。通过多变量数据分析表征酶的命运

获取原文
获取原文并翻译 | 示例
           

摘要

The fate of Protease N (IUB 3.4.24.28, Bacillus subtilis) enzyme was monitored while being used to hydrolyse an initial concentration of 5% (w/v) whey protein isolate (86.98% Kjeldahl nitrogen x 6.38) continuously for 5 h at pH 7.0 and 55 degrees C in an enzymatic membrane reactor (EMR) fitted with a 10 kDa tangential flow filter (TFF). The retentate temperature (A: 25-55 degrees C), initial water permeate flux, J(i) (B: 1.6-18.4 mL/min) and enzyme concentration (C: 0.5-5.5 g) were varied and optimised using response surface methodology (RSM) central composite rotatable design (CCRD). The residual enzyme activity (A(residual)), enzyme leakage (A(leakage)), enzyme loss (A(loss)), average permeate flux (J(average)) and nitrogen recovered in permeate (apparent sieving, S-apparent) were determined. A(leakage) was independent of enzyme concentration but increased concomitant with increasing A and B, while both A(residual) and A(loss) decreased with increasing J(i). Protease N was inhibited by WPI and hydrolysates. At 50 degrees C Protease N enzyme solubilised the concentration polarisation layer (GPL), stabilised J(average) and led to higher A(leakage). Principal components analysis isolated the EMR hydrodynamics due to the retentate temperature, S-apparent, Aleakage and Javerage as factors providing prominent influence in the EMR (principal components 1 and 3 which caused ca. 60% of the EMR variance) while principal component 2 ('measure' of Protease N enzyme property within the reactor) contributed 27.78%. The fate of the enzyme was accounted for as a balance between A(residual), A(leakage) and A(loss). (c) 2006 Elsevier B.V. All rights reserved.
机译:监测蛋白酶N(IUB 3.4.24.28,枯草芽孢杆菌)的去向,同时将其初始浓度为5%(w / v)的乳清蛋白分离物(86.98%凯氏氮x 6.38)在pH值下连续水解5小时。在装有10 kDa切向流过滤器(TFF)的酶膜反应器(EMR)中达到7.0和55摄氏度。改变滞留物温度(A:25-55摄氏度),初始水渗透通量,J(i)(B:1.6-18.4 mL / min)和酶浓度(C:0.5-5.5 g),并使用响应面进行优化方法(RSM)中央复合可旋转设计(CCRD)。残留的酶活性(A(残留)),酶泄漏(A(泄漏)),酶损失(A(损失)),平均渗透通量(J(平均))和渗透物中回收的氮(表观筛分,S表观) )确定。 A(泄漏)与酶浓度无关,但随A和B的增加而增加,而A(残留)和A(损失)均随J(i)的增加而降低。蛋白酶N被WPI和水解产物抑制。在50摄氏度时,蛋白酶N酶溶解了浓度极化层(GPL),稳定了J(平均),并导致了更高的A(泄漏)。主成分分析分离了由于滞留温度,S视在,渗漏和平均引起的EMR流体动力学,这是在EMR中产生显着影响的因素(主要成分1和3引起了大约60%的EMR变化),而主要成分2(反应器内蛋白酶N酶性质的“测量”贡献了27.78%。酶的命运被认为是A(残留),A(泄漏)和A(损失)之间的平衡。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号