首页> 外文期刊>Journal of Materials Science >AlGaN devices and growth of device structures
【24h】

AlGaN devices and growth of device structures

机译:AlGaN器件和器件结构的增长

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The structure of a number of GaN/AlGaN devices and their associated material growth and processing issues are examined in some detail, and extrapolations are made to predict what the advantages and challenges would accrue for similar AlGaN electrical and optical devices. For RF HEMTs, it is likely that the advantages of the larger breakdown voltage (V B) in an Al Y Ga1−Y N/Al X Ga1−X N AlGaN channel HEMT would be outweighed by the disadvantages of the lower frequency of operation created by the smaller channel mobility when compared to AlGaAs/GaAs HEMTs. The same thing can be said for lateral high-power electronic HEMTs because AlGaN/GaN HEMTs with GaN channels can now be fabricated with V B ~ 2,000 V, which is thought to be the upper voltage limit for them, even when the device structures are grown on Si substrates with its accompanying high dislocation density and bow. However, theory suggests that using Al Y Ga1−Y N/Al X Ga1−X N structures in vertical transistors and AlGaN P–N diodes could enable pulsed power applications such as electric armor because they should be able to handle an order of magnitude more power due to their ten times larger breakdown field in ~80 % Al AlGaN, and the Si donor is still relatively shallow at this Al concentration. The major challenges to achieving these goals are to be able to controllably dope the AlGaN in the mid 1015 cm−3 range, create an AlGaN current blocking layer beneath the Al Y Ga1−Y N/Al X Ga1−X N channel that contains an aperture to the drain, confine most of the mismatch dislocations in the AlGaN layers to near the interface with the GaN or AlN substrate that is parallel to the (0001) plane, and fabricate ohmic contacts to the AlGaN with a specific contact resistance <10−2 Ω cm2. Theoretically, the latter can be achieved using polarization doping. For applications to optical device structures, reducing the threading dislocation density in AlN layers on sapphire substrates by high temperature epitaxy is a key parameter for achieving AlGaN-based light emitters with a high efficiency. Stress control and prevention of relaxation is important for obtaining AlGaN layers with a similar dislocation density as the underlying AlN template. A dislocation density below 5 × 108 cm−2 is sufficient for obtaining an efficiency of radiative recombination of 40 % and higher at moderate excitation levels.
机译:详细研究了许多GaN / AlGaN器件的结构及其相关的材料生长和工艺问题,并进行了推断以预测相似的AlGaN电气和光学器件将带来哪些优势和挑战。对于RF HEMT,Al Y Ga1-YN / Al X Ga1-XN AlGaN沟道HEMT中较大的击穿电压(VB)的优点可能会被较小的操作频率较低的缺点所抵消与AlGaAs / GaAs HEMT相比,具有更高的通道迁移率。对于横向大功率电子HEMT可以说是一样的,因为具有GaN沟道的AlGaN / GaN HEMT现在可以用VB〜2,000 V来制造,这被认为是它们的电压上限,即使在器件结构增长时也是如此在Si衬底上具有高位错密度和高弯曲度。但是,理论表明,在垂直晶体管和AlGaN P–N二极管中使用Al Y Ga1-YN / Al X Ga1-XN结构可以实现脉冲电应用,例如电装甲,因为它们应能够处理更多数量级的功率。在约80%的AlGaN中击穿场强达到其十倍,而在该Al浓度下,Si供体仍然相对较浅。实现这些目标的主要挑战是能够在1015 cm-3的中间范围可控地掺杂AlGaN,在Al Y Ga1-YN / Al X Ga1-XN沟道下方创建一个AlGaN电流阻挡层,该沟道包含一个漏极,将AlGaN层中的大多数失配位错限制在与GaN或与(0001)平面平行的GaN或AlN衬底的界面附近,并以特定的接触电阻<10-2Ω形成与AlGaN的欧姆接触平方厘米从理论上讲,后者可以使用极化掺杂来实现。对于光学器件结构的应用,通过高温外延降低蓝宝石衬底上AlN层中的螺纹位错密度是实现高效率AlGaN基发光体的关键参数。应力控制和防止松弛对于获得位错密度与下面的AlN模板相似的AlGaN层很重要。位错密度低于5×108 cm-2足以在中等激发水平下获得40%或更高的辐射复合效率。

著录项

  • 来源
    《Journal of Materials Science》 |2015年第9期|3267-3307|共41页
  • 作者单位

    Army Research Lab – SEDD">(1);

    Electrical Computer and Systems Engineering Department Rensselaer Polytechnic Institute">(2);

    Army Research Lab – SEDD">(1);

    Sensor Electronic Technology Inc.">(3);

    Materials Science and Engineering Department North Carolina State University">(4);

    College of Nanoscale Science and Engineering University at Albany">(5);

    Kyma Technologies Inc">(6);

    Structured Materials Industries Inc.">(7);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号