首页> 外文期刊>Journal of Materials Science >Biocorrosion and biodegradation behavior of ultralight Mg–4Li–1Ca (LC41) alloy in simulated body fluid for degradable implant applications
【24h】

Biocorrosion and biodegradation behavior of ultralight Mg–4Li–1Ca (LC41) alloy in simulated body fluid for degradable implant applications

机译:Mg–4Li–1Ca(LC41)超轻合金在可降解植入物应用模拟体液中的生物腐蚀和生物降解行为

获取原文
获取原文并翻译 | 示例
           

摘要

Biocorrosion and biodegradation behavior of Mg–4Li–1Ca alloy were investigated for industrially important end product conditions, namely the homogenized, rolled, and rolled + annealed ones. Among the three, homogenized material showed the highest corrosion rate (27.2 mm/year) in a simulated body fluid (SBF) owing to its coarse grain structure containing long dumbbell-shaped eutectic phase. Rolled + annealed material exhibited the lowest corrosion rate (0.94 mm/year) corresponding to the highest corrosion resistance (1.854 kΩ cm2) in SBF. This higher corrosion resistance is associated with a uniform distribution of corrosion sites and a lower occurrence of twins in the microstructure. However, the rolled material showed a greater corrosion rate due to an appreciable volume fraction of {10( bar{1} )1} compression twins, {10( bar{1} )2} tension twins, and {10( bar{1} )1}–{10( bar{1} )2} double twins, which form galvanic couples with the adjacent grains that enhances localized corrosion. A mechanism of biodegradation at the alloy/SBF interface is proposed. It involves the formation of bone-like hydroxyapatite and metastable octa calcium phosphate, along with other degradation products, such as magnesium hydroxide and lithium hydroxide.
机译:研究了Mg-4Li-1Ca合金在工业上重要的最终产品条件(即均质化,轧制和轧制+退火退火)的生物腐蚀和生物降解行为。在这三种中,由于均质材料的粗晶粒结构包含长哑铃状的共晶相,因此在模拟体液(SBF)中显示出最高的腐蚀速率(27.2 mm /年)。轧制+退火材料显示出最低的腐蚀速率(0.94 mm /年),对应于SBF中最高的耐腐蚀性(1.854kΩcm2)。这种较高的耐蚀性与腐蚀部位的均匀分布和微观结构中孪晶的发生率降低有关。但是,由于{10(bar {1})1}压缩孪晶,{10(bar {1})2}拉伸孪晶和{10(bar {1) }} 1} – {10(bar {1})2}双孪晶,它们与相邻晶粒形成电偶,从而增强局部腐蚀。提出了合金/ SBF界面的生物降解机理。它涉及骨状羟基磷灰石和亚稳八磷酸钙的形成,以及其他降解产物,如氢氧化镁和氢氧化锂。

著录项

  • 来源
    《Journal of Materials Science》 |2015年第8期|3041-3050|共10页
  • 作者单位

    IITB-Monash Research Academy Indian Institute of Technology Bombay">(1);

    Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay">(2);

    Department of Materials Engineering Centre for Advanced Hybrid Materials Monash University">(3);

    IITB-Monash Research Academy Indian Institute of Technology Bombay">(1);

    Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay">(2);

    IITB-Monash Research Academy Indian Institute of Technology Bombay">(1);

    Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay">(2);

    IITB-Monash Research Academy Indian Institute of Technology Bombay">(1);

    Department of Materials Engineering Centre for Advanced Hybrid Materials Monash University">(3);

    Laboratory of Hybrid Nanostructured Materials Moscow Institute of Steel and Alloys">(4);

    Institut für Metallkunde und Metallphysik RWTH Aachen University">(5);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号