首页> 美国卫生研究院文献>Bioactive Materials >Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study
【2h】

Biodegradation of Mg-14Li alloy in simulated body fluid: A proof-of-concept study

机译:Mg-14Li合金在模拟体液中的生物降解:概念验证研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

High corrosion kinetics and localised corrosion progress are the primary concerns arising from the clinical implementation of magnesium (Mg) based implantable devices. In this study, a binary Mg-lithium (Li) alloy consisting a record high Li content of 14% (in weight) was employed as model material aiming to yield homogenous and slow corrosion behaviour in a simulated body fluid, i.e. minimum essential medium (MEM), in comparison to that of generic Mg alloy AZ31 and biocompatible Mg-0.5Zn-0.5Ca counterparts. Scanning electron microscopy examination reveals single-phase microstructural characteristics of Mg-14Li (β-Li), whilst the presence of insoluble phases, cathodic to α-Mg matrix, in AZ31 and Mg-0.5Zn-0.5Ca. Though slight differences exist in the corrosion kinetics of all the specimens over a short-term time scale (no longer than 60 min), as indicated by potentiodynamic polarisation and electrochemical impedance spectroscopy, profound variations are apparent in terms of immersion tests, i.e. mass loss and hydrogen evolution measurements (up to 7 days). Cross-sectional micrographs unveil severe pitting corrosion in AZ31 and Mg-0.5Zn-0.5Ca, but not the case for Mg-14Li. X-ray diffraction patterns and X-ray photoelectron spectroscopy confirm that a compact film (25 μm in thickness) consisting of lithium carbonate (Li2CO3) and calcium hydroxide was generated on the surface of Mg-14Li in MEM, which contributes greatly to its low corrosion rate. It is proposed therefore that the single-phase structure and formation of protective and defect-free Li2CO3 film give rise to the controlled and homogenous corrosion behaviour of Mg-14Li in MEM, providing new insights for the exploration of biodegradable Mg materials.
机译:高腐蚀动力学和局部腐蚀进程是基于镁(Mg)的可植入设备的临床实施引起的主要问题。在这项研究中,以创纪录的高Li含量(重量百分比)为14%的二元Mg-锂(Li)合金为模型材料,旨在在模拟体液中产生均质且缓慢的腐蚀行为,即最低必需介质(与普通Mg合金AZ31和生物相容性Mg-0.5Zn-0.5Ca对应物相比)。扫描电子显微镜检查揭示了Mg-14Li(β-Li)的单相微观结构特征,而在AZ31和Mg-0.5Zn-0.5Ca中存在与α-Mg基质成阴极的不溶相。尽管在短时间内(不超过60分钟)所有样品的腐蚀动力学存在细微差异,如电位动力学极化和电化学阻抗谱所表明的那样,但在浸没测试方面,即质量损失方面,存在明显的变化和析氢测量(长达7天)。横截面显微照片揭示了AZ31和Mg-0.5Zn-0.5Ca中的严重点蚀,但Mg-14Li并非如此。 X射线衍射图谱和X射线光电子能谱证实,在MEM的Mg-14Li表面生成了由碳酸锂(Li2CO3)和氢氧化钙组成的致密膜(厚度为25μm),这对降低膜的含量起到了很大作用。腐蚀率。因此,有人提出,单相结构和保护性无缺陷的Li2CO3膜的形成会引起MEM中Mg-14Li的受控且均匀的腐蚀行为,从而为探索可生物降解的Mg材料提供了新的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号