首页> 外文期刊>Journal of materials science >Alternate lanthanum oxide/silicon oxynitride-based gate stack performance enhancement due to ultrathin oxynitride interfacial layer for CMOS applications
【24h】

Alternate lanthanum oxide/silicon oxynitride-based gate stack performance enhancement due to ultrathin oxynitride interfacial layer for CMOS applications

机译:基于氧化镧/氧化硅的栅极堆叠性能增强由于CMOS应用的超氧氮化物界面引起的增强

获取原文
获取原文并翻译 | 示例
       

摘要

Metal-insulator-semiconductor (MIS)-based Pt/La_2O_3/SiO_XN_Y/p-Si/Pt structures are fabricated using ultrathin silicon oxynitride (SiO_XN_Y~4 nm) interfacial layer underneath of lanthanum (III) oxide (La_2O_3~7.8 nm) with Pt as gate electrode for CMOS applications. Capacitance-voltage (C-V) characteristics of Pt/La_2O_3/SiO_XN_Y/p-Si/Pt at 500 kHz showed a positive gate bias threshold voltage (V_(th)) shift of ~0.43 V (~43.8%) and flat-band (V_(ft)) shift of ~ 1.24 V (~42.3%) as compared to Pt/ La_2O_3/p-Si/Pt MIS structures, attributing to the reduction in effective positive oxide charges at La_2O_3/SiO_XN_Y/Si gate stack. Likewise, conductance-voltage (G-V) characteristics show ~0.56 (~44.4%) reduction in FWHM for Pt/La_2O_3/SiO_XN_Y/p-Si/Pt as compared to Pt/La_2O_3/p-Si/Pt MIS structures revealing the reduction in interface states at La_2O_3/SiO_XN_Y/Si interface. There is a considerable reduction of effective oxide charge concentration (N_(eff))~3.99 × 10~(10) cm~(-2) by (~ 15.2%) and ~56.8% lower gate leakage current density ~4.47 × 10~(-7) A/cm~2 (|J|-V) at - 1 V for SiO_XN~Y based MIS structures w.r.t its counterpart. Capacitance-time (C-t) characteristics, constant voltage stress (CVS) and temperature measurements for C-V and |J|-V demonstrate the considerable retention ~ 12 years, electrical improvement and reliability of MIS structures. The depth profile analysis X-ray photoelectron spectroscopy (XPS) for SiO_XN_Y/Si gate stack clearly reveals that less nitrogen concentration in bulk than SiO_XN_Y/Si interface. Atomic force microscopy (AFM) micrographs of La_2O_3/Si and SiO_XN_Y/Si showed the significantly lesser r.m.s roughness of v 1.11 ± 0.39 nm and ~ 0.97 ±0.11 nm, respectively. Thus, the ultrathin SiO_XN_Y interfacial layer underneath of La_2O_3 demonstrates a significantly improved electrical performance and prelude the gate stack strong potential for reliable CMOS logic devices and integrated circuits.
机译:基于镧(III)氧化物(La_2O_3〜7.8nm)的超薄氧化硅(SiO_xN_y〜4nm)界面层,制造金属绝缘体半导体(MIS)的Pt / La_2O_3 / SiO_XN_Y / PT结构。 Pt为CMOS应用的栅电极。 PT / LA_2O_3 / SIO_XN_Y / P-SI / PT的电容 - 电压(CV)特性为500 kHz显示正栅极偏置阈值电压(V_(TH))偏移〜0.43 V(〜43.8%)和平带(与Pt / La_2O_3 / P-Si / Pt MIS结构相比,V_(FT))偏移〜1.24V(〜42.3%),归因于LA_2O_3 / SIO_XN_Y / SI栅极堆叠的有效正氧化物电荷的降低。同样,与Pt / La_2O_3 / P-Si / PT MIS结构相比,Pt / La_2O_3 / SiO_XN_Y / P-Si / Pt的FWHM相比,电导 - 电压(GV)特性显示为0.56(〜44.4%)。 LA_2O_3 / SIO_XN_Y / SI接口的接口状态。有效降低有效的氧化物电荷浓度(N_(EFF))〜3.99×10〜(10)cm〜(-2)(〜15.2%)和〜56.8%下闸门漏电流密度〜4.47×10〜 (-7)A / cm〜2(| J | -V)AT - 1 V用于SIO_XN〜Y基于MIS结构WRT其对应物。 C-V和|恒定电压应力(C-T)特性,恒压应力(CVS)和温度测量为C-V和| -V显示了相当大的保留〜12年,电气改进和MIS结构的可靠性。用于SiO_XN_Y / SI栅极堆叠的深度轮廓分析X射线光电子能谱(XPS)清楚地揭示了比SIO_XN_Y / SI界面在散装中少的氮浓度。 La_2O_3 / Si和SiO_XN_Y / Si的原子力显微镜(AFM)显微照片显示出显着的较低的v 1.11±0.39nm和〜0.97±0.11nm的粗糙度。因此,La_2O_3下面的超薄SiO_XN_Y界面层演示了显着改善的电气性能,并且使栅极堆栈具有可靠的CMOS逻辑器件和集成电路的强大电位。

著录项

  • 来源
    《Journal of materials science》 |2020年第3期|1986-1995|共10页
  • 作者单位

    School of Computing and Electrical Engineering (SCEE) Indian Institute of Technology (IIT) Mandi Mandi Himachal Pradesh 175005 India;

    School of Computing and Electrical Engineering (SCEE) Indian Institute of Technology (IIT) Mandi Mandi Himachal Pradesh 175005 India;

    School of Computing and Electrical Engineering (SCEE) Indian Institute of Technology (IIT) Mandi Mandi Himachal Pradesh 175005 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号