...
首页> 外文期刊>Journal of Materials Research >Electronic structure, lattice dynamics, and thermoelectric properties of bismuth nanowire from first-principles calculation
【24h】

Electronic structure, lattice dynamics, and thermoelectric properties of bismuth nanowire from first-principles calculation

机译:通过第一性原理计算铋纳米线的电子结构,晶格动力学和热电性质

获取原文
获取原文并翻译 | 示例
           

摘要

To reveal the electron and phonon transport mechanism in bismuth nanowire (BiNW), the electronic structure, the lattice dynamics, and the thermoelectric properties of bismuth bulk (BiB) and BiNW were investigated in this paper through first-principles calculation and the Boltzmann transport theory. The results suggest that BiNW possesses an increased electrical conductivity and Seebeck coefficient, while its thermal conductivity, especially phonon thermal conductivity, is reduced significantly as compared to BiB. As a consequence, a largely enhanced figure of merit (ZT) at 300 K of 2.73 is achieved for BiNW. The enhancement in electrical conductivity and Seebeck coefficient of BiNW is originated from its high density of states and large effective mass of carriers. Such significant suppression in phonon thermal conductivity of BiNW is ascribed to the reduced phonon vibration frequency, the decreased phonon density of states, and the shortened mean free path of phonons. So BiNW should be viewed as an excellent candidate for a thermoelectric material with a high figure of merit. Moreover, we have provided a complete understanding on the relationship between the electronic structure, the dynamics, and the thermoelectric properties of BiNW.
机译:为了揭示铋纳米线(BiNW)中的电子和声子传输机理,通过第一性原理计算和玻耳兹曼输运理论研究了铋体(BiB)和BiNW的电子结构,晶格动力学以及热电性质。 。结果表明,BiNW具有更高的电导率和塞贝克系数,而与BiB相比,BiNW的热导率(尤其是声子热导率)显着降低。结果,BiNW在300 K的2.73处获得了显着提高的品质因数(ZT)。 BiNW的电导率和塞贝克系数的提高源自其态密度高和载流子有效质量大。 BiNW的声子热导率的这种显着抑制归因于声子振动频率的降低,声子密度的降低和声子平均自由程的缩短。因此,BiNW应该被视为具有高品质因数的热电材料的优秀候选者。此外,我们对BiNW的电子结构,动力学和热电特性之间的关系提供了完整的理解。

著录项

  • 来源
    《Journal of Materials Research》 |2017年第12期|2405-2413|共9页
  • 作者单位

    College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;

    College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;

    College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;

    School of Energy and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号