...
首页> 外文期刊>Journal of materials in civil engineering >Engineering Properties of Biocementation Coarse- and Fine-Grained Sand Catalyzed By Bacterial Cells and Bacterial Enzyme
【24h】

Engineering Properties of Biocementation Coarse- and Fine-Grained Sand Catalyzed By Bacterial Cells and Bacterial Enzyme

机译:细菌细胞和细菌酶催化的生物胶结粗粒细沙的工程特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Biological induced calcite precipitation is a potential method being investigated for improved soil stabilization. In terms of the associated urea hydrolysis concept, three main strategies have been developed over the last 2 decades: (1) using live urease-producing bacteria, (2) using plant-extracted urease, and (3) using bacterial-extracted urease. This paper focused on evaluating the comparative benefits of two of these methods (i.e., live bacterial cell or extracted bacterial urease methods for induced calcium precipitation) in terms of their biocementation performance. Cell-based induced carbonate precipitation (ICP) (i.e., MICP) testing was completed on standard Ottawa coarse-grained sand (#20/30), and bacterial-enzyme-based (i.e., BEICP) testing was conducted individually on both coarse-grained and fine-grained (#50/70) sands. Distinctly higher unconfined compressive strength (UCS) was achieved with the BEICP method when evaluated at similar levels of calcium precipitation. Residual permeability levels remained markedly higher after BEICP testing versus MICP. The UCS of BEICP coarse-grained treated sand was approximately 450-1,500 kPa, whereas that of fine-grained treated sand had a notably lower range (i.e., 250-900 kPa) when evaluated at similar levels of CaCO_3 production. These results indicate that calcium carbonate content is not the sole factor which impacts the strength of biocemented sand. Additional test-tube investigation of ICP-derived CaCO_3 precipitation was used to evaluate the chemical conversion efficiency for each method, i.e., live cells (i.e., Sporosarcina pasteurii) or bacterial-extracted urease. The calcite precipitation ratio declined at higher substrate chemical concentrations. However, this ratio increased with higher rates of enzymatic activity.
机译:生物诱导的方解石沉淀是改善土壤稳定性的一种潜在方法。根据相关的尿素水解概念,在过去的20年中已经开发出三种主要策略:(1)使用产生活脲酶的细菌,(2)使用植物提取的尿素酶,和(3)使用细菌提取的尿素酶。本文着重评估了这两种方法(即活细菌细胞或提取的细菌脲酶方法用于诱导钙沉淀)在生物胶凝性能方面的比较优势。在标准的渥太华粗粒砂(#20/30)上完成了基于细胞的碳酸盐沉淀(ICP)(即MICP)测试,并分别对两种粗砂岩进行了基于细菌-酶的测试(即BEICP)。粒状和细粒(#50/70)沙子。当在相似的钙沉淀水平下进行评估时,采用BEICP方法可获得明显更高的无侧限抗压强度(UCS)。 BEICP测试后的残留磁导率水平仍然明显高于MICP。当以类似的CaCO_3生产水平进行评估时,BEICP粗粒处理过的砂的UCS约为450-1,500 kPa,而细粒处理过的砂的UCS则明显较低(即250-900 kPa)。这些结果表明碳酸钙含量不是影响生物水泥砂强度的唯一因素。 ICP衍生的CaCO_3沉淀的其他试管研究用于评估每种方法,即活细胞(即,Sporosarcina pasteurii)或细菌提取的脲酶的化学转化效率。在较高的底物化学浓度下,方解石沉淀率下降。但是,该比例随着酶活性的增加而增加。

著录项

  • 来源
    《Journal of materials in civil engineering》 |2020年第4期|04020030.1-04020030.15|共15页
  • 作者单位

    Univ. of Danang-Univ. of Science and Technology Danang 550000 Vietnam;

    Dept. of Civil and Environmental Engineering Univ. of Notre Dame Notre Dame IN 46556;

    Dept. of Civil and Environmental Engineering East Lansing MI 48824;

    Disaster Prevention Research Division National Disaster Management Research Institute Ulsan 44538 Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号