首页> 外文期刊>Journal of Logic and Algebraic Programming >Declarative debugging of rewriting logic specifications
【24h】

Declarative debugging of rewriting logic specifications

机译:声明式调试重写逻辑规范

获取原文
获取原文并翻译 | 示例

摘要

Declarative debugging is a semi-automatic technique that starts from an incorrect computation and locates a program fragment responsible for the error by building a tree representing this computation and guiding the user through it to find the error. Membership equational logic (MEL) is an equational logic that in addition to equations allows one to state membership axioms characterizing the elements of a sort. Rewriting logic is a logic of change that extends MEL by adding rewrite rules, which correspond to transitions between states and can be nondeterministic. We propose here a calculus to infer reductions, sort inferences, normal forms, and least sorts with the equational subset of rewriting logic, and rewrites and sets of reachable terms through rules. We use an abbreviation of the proof trees computed with this calculus to build appropriate debugging trees for both wrong (an incorrect result obtained from an initial result) and missing answers (results that are erroneous because they are incomplete), whose adequacy for debugging is proved. Using these trees we have implemented Maude DDebugger, a declarative debugger for Maude, a high-performance system based on rewriting logic. We illustrate its use with an example.
机译:声明式调试是一种半自动技术,它从不正确的计算开始,并通过构建表示该计算的树并指导用户进行查找错误的方法来定位导致错误的程序片段。隶属方程逻辑(MEL)是一种方程逻辑,除方程外,还允许陈述表征某种元素的隶属公理。重写逻辑是通过添加重写规则来扩展MEL的更改逻辑,重写规则对应于状态之间的转换,并且可能是不确定的。我们在这里提出一种演算,以推断归约,排序推论,正态形式,以及使用重写逻辑的等式子集进行最小排序,并通过规则重写和设置可及项。我们使用通过该演算计算的证明树的缩写来为错误的(从初始结果获得的不正确结果)和缺少的答案(由于其不完整而产生的错误结果)构建适当的调试树,证明了调试的充分性。使用这些树,我们实现了Maude DDebugger,这是Maude的声明式调试器,Maude是基于重写逻辑的高性能系统。我们通过一个例子来说明它的用法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号