首页> 外文期刊>Journal of Logic and Algebraic Programming >Symmetric Heyting relation algebras with applications to hypergraphs
【24h】

Symmetric Heyting relation algebras with applications to hypergraphs

机译:对称Heyting关系代数及其在超图上的应用

获取原文
获取原文并翻译 | 示例

摘要

A relation on a hypergraph is a binary relation on the set consisting of all the nodes and the edges, and which satisfies a constraint involving the incidence structure of the hypergraph. These relations correspond to join preserving mappings on the lattice of sub-hypergraphs. This paper introduces a generalization of a relation algebra in which the Boolean algebra part is replaced by a Heyting algebra that supports an order-reversing involution. A general construction for these symmetric Heyting relation algebras is given which includes as a special case the algebra of relations on a hypergraph. A particular feature of symmetric Heyting relation algebras is that instead of an involutory converse operation they possess both a left converse and a right converse which form an adjoint pair of operations. Properties of the converses are established and used to derive a generalization of the well-known connection between converse, complement, erosion and dilation in mathematical morphology. This provides part of the foundation necessary to develop mathematical morphology on hypergraphs based on relations on hypergraphs.
机译:超图上的关系是由所有节点和边组成的集合上的二元关系,它满足涉及超图的入射结构的约束。这些关系对应于子超图格上的连接保留映射。本文介绍了关系代数的一般化,其中布尔代数部分被支持逆序对合的Heyting代数所代替。给出了这些对称Heyting关系代数的一般构造,其中包括超图上的关系代数作为特殊情况。对称的Heyting关系代数的一个特殊特征是,它们不具有非自愿的逆运算,而是同时具有左逆和右逆,它们构成了一对运算。建立了逆转换的属性,并将其用于推导数学形态学中逆转换,补码,腐蚀和膨胀之间众所周知的联系。这提供了根据超图上的关系开发超图上的数学形态学所需的部分基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号