首页> 外文期刊>Journal of Logic and Algebraic Programming >Combining relation algebra and data refinement to develop rectangle-based functional programs for reflexive-transitive closures
【24h】

Combining relation algebra and data refinement to develop rectangle-based functional programs for reflexive-transitive closures

机译:结合关系代数和数据优化以开发基于矩形的自反-传递闭包功能程序

获取原文
获取原文并翻译 | 示例

摘要

We show how to systematically derive simple purely functional algorithms for computing the reflexive-transitive closure of directed graphs. Directed graphs can be represented as binary relations and we develop our algorithms based on a relation-algebraic description of reflexive-transitive closures. This description employs the notion of rectangles and instantiating the resulting algorithm with different kinds of rectangles leads to different algorithms for computing reflexive-transitive closures. Using data refinement we then develop simple Haskell programs for two specific choices of rectangles and show that one of them has cubic running time like Warshall's standard algorithm. Finally, we apply our approach to other standard operations of relation algebra and present graph theoretic applications of our developments.
机译:我们展示了如何系统地导出用于计算有向图的自反传递闭合的简单纯函数算法。有向图可以表示为二进制关系,我们基于自反-传递闭包的关系代数描述来开发算法。该描述采用了矩形的概念,并且用不同种类的矩形实例化生成的算法导致了用于计算自反传递闭包的不同算法。然后,通过数据精炼,我们为两个特定的矩形选择开发了简单的Haskell程序,并证明其中一个具有三次运行时间,类似于Warshall的标准算法。最后,我们将我们的方法应用于关系代数的其他标准运算,并提出了我们发展的图论应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号