首页> 外文期刊>The journal of logical and algebraic methods in programming >Scalable optimal deployment in the cloud of component-based applications using optimization modulo theory, mathematical programming and symmetry breaking
【24h】

Scalable optimal deployment in the cloud of component-based applications using optimization modulo theory, mathematical programming and symmetry breaking

机译:使用优化模数理论,数学编程和对称性断开的基于组件的应用程序云中的可扩展最佳部署

获取原文
获取原文并翻译 | 示例

摘要

Automated deployment of component-based applications in the Cloud consists in the allocation of virtual machines (VMs) offers from various Cloud Providers such that the constraints induced by the interactions between components and by the components hardware/software requirements are satisfied and the performance objectives are optimized (e.g. costs are minimized). It can be formulated as a constraint optimization problem, hence, in principle, the optimization can be carried out automatically. In the case the set of VM offers is large (several hundreds), the computational requirement is huge, making the automatic optimization practically impossible with the current general optimization modulo theory (OMT) and mathematical programming (MP) tools. We overcame the difficulty by methodologically analyzing the particularities of the problem with the aim of identifying search space reduction methods. These are methods exploiting: (i) the symmetries of the general Cloud deployment problem, (ii) the graph representation associated to the structural constraints specific to each particular application, and (iii) their combination. An extensive experimental analysis has been conducted on four classes of real-world problems, using six symmetry breaking strategies and two types of optimization solvers.As a result, the combination of a variable reduction strategy with a column-wise symmetry breaker leads to a scalable deployment solution, when OMT is used to solve the resulting optimization problem. (C) 2021 Elsevier Inc. All rights reserved.
机译:自动部署云中的组件的应用程序在分配各种云提供商的虚拟机(VMS)提供中,使得组件与组件之间的交互引起的约束满足,并且性能目标是满足的优化(例如成本最小化)。它可以作为约束优化问题,因此,原则上,可以自动进行优化。在这种情况下设置的虚拟机提供的是大(几百),计算需求是巨大的,使得自动优化与目前一般的优化模理论(OMT)和数学规划(MP)的工具几乎是不可能的。通过方法分析问题的特殊性,我们通过识别搜索空间减少方法来克服困难。这些是利用的方法:(i)常规云部署问题的对称性,(ii)与特定于每个特定应用的结构约束相关的图表表示,(iii)它们的组合。在四类实际问题上进行了广泛的实验分析,使用六种对称性破坏策略和两种类型的优化求解器。结果,具有列 - 方向对称断路器的可变降低策略的组合导致可扩展的部署解决方案,当OMT用于解决所产生的优化问题时。 (c)2021 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号