...
首页> 外文期刊>The Journal of Chemical Physics >Orbital-optimized third-order M?ller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems
【24h】

Orbital-optimized third-order M?ller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems

机译:轨道优化的三阶M?ller-Plesset微扰理论及其自旋分量和自旋相反的标度变体:在对称破坏问题中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this research, orbital-optimized third-order M?ller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order M?ller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order M?ller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O _4 ~+, O 3, and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O _4 ~+, the OMP3 prediction, 1343 cm ~(-1), for ω _6 (b _(3u)) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm ~(-1), and OD, 1193 cm ~(-1), methods (the experimental value is 1320 cm ~(-1)). For O _3, the predictions of SCS-OMP3 (1143 cm ~(-1)) and SOS-OMP3 (1165 cm ~(-1)) are remarkably better than the more robust OD method (1282 cm -1); the experimental value is 1089 cm -1. For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, |δω _e| = 44 and |δω _e| = 35 cm ~(-1), respectively, while for OD, |δω _e| = 161 cm -1and CCSD |δω _e| = 106 cm -1. Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on present application results. The OMP3 method offers certain advantages: it provides reliable vibrational frequencies in case of symmetry-breaking problems, especially with spin-scaling tricks, its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, and the computation of one-electron properties are easier because there is no response contribution to the particle density matrices. The OMP3 has further advantages over standard MP3, making it promising for excited state properties via linear response theory.
机译:在这项研究中,介绍了轨道优化的三阶Müller-Plesset微扰理论(OMP3)及其自旋分量和自旋相反的标度变体(SCS-OMP3和SOS-OMP3)。使用基于拉格朗日的方法,提出了一种高效的二次收敛算法,用于针对三阶M?ller-Plesset微扰理论(MP3)的分子轨道(MO)进行变分优化。以自旋轨道形式报告了响应密度矩阵,MO梯度和Hessian的显式方程。将OMP3,SCS-OMP3和SOS-OMP3方法与二阶Müller-Plesset微扰理论(MP2),MP3,耦合集群双精度(CCD),优化双精度(OD)和耦合-群集单打和双打(CCSD)方法。所有这些方法都适用于O _4〜+,O 3和七个双原子分子。结果表明,对于观察到对称性破坏问题的分子,OMP3及其变体的振动频率明显优于MP3,CCSD和OD。对于O _4〜+,对于出现对称性破坏的ω_6(b _(3u))模式,OMP3预测为1343 cm〜(-1)甚至比可能更可靠的方法(如Brueckner doubles(BD) ),1194 cm〜(-1)和OD 1193 cm〜(-1)方法(实验值为1320 cm〜(-1))。对于O _3,SCS-OMP3(1143 cm〜(-1))和SOS-OMP3(1165 cm〜(-1))的预测要比更鲁棒的OD方法(1282 cm -1)更好。实验值为1089 cm -1。对于这七个硅藻,SCS-OMP3和SOS-OMP3方法再次提供了最低的平均误差|δω_e |。 = 44并且|δω_e | =分别为35 cm〜(-1),而对于OD,|δω_e | = 161 cm -1和CCSD |δω_e | = 106厘米-1。因此,对于考虑的测试案例,OMP3尤其是其自旋缩放变体的性能要比MP3,CCSD和更健壮的OD方法好得多。因此,考虑到计算成本和可靠性,根据目前的应用结果,SCS-OMP3和SOS-OMP3似乎是打破对称性的最佳方法。 OMP3方法具有某些优点:在出现对称性破坏问题时,它提供了可靠的振动频率,尤其是在使用自旋缩放技巧时,其解析梯度更易于计算,因为无需求解轨道响应的耦合摄动方程,并且单电子性质的计算更加容易,因为对粒子密度矩阵没有响应贡献。 OMP3与标准MP3相比具有更多优势,通过线性响应理论使其具有激发态特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号