首页> 外文期刊>The journal of logical and algebraic methods in programming >(Co)inductive proof systems for compositional proofs in reachability logic
【24h】

(Co)inductive proof systems for compositional proofs in reachability logic

机译:(CO)可达性逻辑中的组成证据的电感证明系统

获取原文
获取原文并翻译 | 示例

摘要

Reachability Logic is a formalism that can be used, among others, for expressing partial correctness properties of transition systems. In this paper we present three proof systems for this formalism, all of which are sound and complete and inherit the coinductive nature of the logic. The proof systems differ, however, in several aspects. First, they use induction and coinduction in different proportions. The second aspect regards compositionality, broadly meaning their ability to prove simpler formulas on smaller systems and to reuse those formulas as lemmas for proving more complex formulas on larger systems. The third aspect is the difficulty of their soundness proofs.We show that the more induction a proof system uses, and the more specialised is its use of coinduction (with respect to our problem domain), the more compositional the proof system is, but the more difficult is its soundness proof.We present formalisations of these results in the Coq proof assistant. In particular we have developed support for coinductive proofs that is comparable to that provided by Coq for inductive proofs. This may be of interest to a broader class of Coq users. (C) 2020 Elsevier Inc. All rights reserved.
机译:可达性逻辑是一种形式主义,可以在其他方面用于表达过渡系统的部分正确性。在本文中,我们为此形式主义提出了三种证明系统,所有这些系统都是良好的,并且继承了逻辑的调控性质。然而,证明系统在若干方面不同。首先,它们在不同比例中使用诱导和调用。第二方面至关重要,广泛意味着它们在较小系统上证明更简单的公式的能力,并将这些公式重用作为lemmas以证明更大的系统上的更复杂的公式。第三个方面是他们的健全样本的难度。我们展示了诱导系统使用的诱导系统使用越多,越专用于其使用互连(关于我们的问题域),证明系统越多的组成,而且更困难的是其健全的证明。我们在COQ验证助理方面存在这些结果的行动。特别是,我们已经为COQ提供了与电感证明的COQ提供的配合证据的支持。这可能对更广泛的COQ用户感兴趣。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号