首页> 外文期刊>Journal of Logic and Algebraic Programming >Cryptomorphic topological structures: A computational, relation-algebraic approach
【24h】

Cryptomorphic topological structures: A computational, relation-algebraic approach

机译:拟态拓扑结构:一种计算,关系-代数方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present an approach to pointless topology that is based on the study of the membership or is-element-of relation within a typed or categorical version of the component-free calculus of relations. This allows us to study several other approaches to topology, including point-set topology, on an abstract and component-free level. In particular, we will show that topologies defined by open sets, closed sets, a family of neighbourhood systems, a topological kernel-mapping, a Kuratowski closure-mapping, or a topological Aumann contact relation are cryptomorphic concepts, i.e., each concept can bijectively be transformed into any other of these concepts. All transformations are specified via relation-algebraic expressions which, in case of set-theoretic relations (that is, in case of point-set topology) can immediately be executed by the specific purpose computer algebra system RELVIEW. (C) 2018 Elsevier Inc. All rights reserved.
机译:在本文中,我们提出了一种无点拓扑方法,该方法基于对无分量关系演算的类型化或分类版本中的隶属关系或is-element-of关系的研究。这使我们能够在抽象和无组件的层次上研究其他几种拓扑方法,包括点集拓扑。特别是,我们将显示由开放集,封闭集,邻域系统族,拓扑内核映射,Kuratowski闭包映射或拓扑Aumann接触关系定义的拓扑是隐构概念,即每个概念可以双射转化为其他任何这些概念。所有变换都是通过关系代数表达式指定的,在集理论关系的情况下(即在点集拓扑的情况下),可以由专用计算机代数系统RELVIEW立即执行。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号