首页> 外文期刊>Journal of the International Association for Shell and Spatial Structures >GENERALIZATION OF RIGID-FOLDABLE QUADRILATERAL-MESH ORIGAMI
【24h】

GENERALIZATION OF RIGID-FOLDABLE QUADRILATERAL-MESH ORIGAMI

机译:刚性可折叠四边形网状折纸的广义化

获取原文
获取原文并翻译 | 示例

摘要

In general, a quadrilateral-mesh surface does not enable a continuous rigid motion because an overconstrained system, in which the number of constraints around degree-4 vertices (three for each vertex) exceeds the number of variables (the number of hinges), is constructed. However, it is known that the developable double corrugation surface, known as Miura-ori, produces a rigid deployment mechanism. The rigid-foldability of Miura-ori is due to the singularity in its pattern, where a single vertex is repeated. We generalize the geometric condition for enabling rigid motion in general quadrilateral-mesh origami without simple repeating symmetry. To ensure the existence of a finite motion, we derive the identity of functions from the formula for degree-4 single-vertex origami. This yields a variety of unexplored generalized shapes of quadrilateral-mesh origami that preserve one-DOF finite rigid-foldability in addition to developability andflat-foldability.
机译:通常,四边形网格曲面无法实现连续的刚性运动,因为过度约束的系统(其中4度顶点周围的约束数量(每个顶点三个)超过变量数量(铰链数量))建造。然而,已知的是,称为Miura-ori的可展开的双波纹表面产生了刚性的展开机构。 Miura-ori的刚性可折叠性是由于其图案的奇异性,其中重复了一个顶点。我们概括了几何条件,使一般四边形网状折纸能够进行刚性运动而无需简单地重复对称性。为了确保有限运动的存在,我们从4度单顶点折纸的公式中得出函数的标识。这产生了四边形网状折纸的多种未探索的广义形状,除了可显影性和可折叠性之外,还保留了一个自由度的有限刚性可折叠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号